X3 University of
LelceSter DOCUMENT SUPPLY - MAIN LIBRARY
Copyright Notice

COPYRIGHT & COURSE PACKS SERVICE

Staff and students of this University are reminded that copyright subsists in this
extract and the work from which it was taken. This Digital Copy has been made
under the terms of a CLA licence which allows you to:

e access and download a copy;
e print out a copy;

This Digital Copy and any digital or printed copy supplied to or made by you under
the terms of this Licence are for use in connection with this Course of Study. You
may retain such copies after the end of the course, but strictly for your own personal
use.

All copies (including electronic copies) shall include this Copyright Notice and shall
be destroyed and/or deleted if and when required by the University.

Except as provided for by copyright law, no further copying, storage or distribution
(including by e-mail) is permitted without the consent of the copyright holder.

The author (which term includes artists and other visual creators) has moral rights in
the work and neither staff not students may cause, or permit, the distortion, mutilation
or other modification of the work, or any other derogatory treatment of it, which
would be prejudicial to the honour or reputation of the author.

Course of Study: MSPSSOCDS_D - Occupational Psychology & Psychology of
Work (Oct09)

Name of Designated Person
authorising scanning: Robert Melocha

Title: Chapter 1 'Understanding task analysis for Human-Computer Interaction' in The
Handbook of Task Analysis for human-computer interaction, 2004, pp. 5-47.

Name of Author: Dan Diaper (Author), D. Diaper and N.A. Stanton (Editors)
Name of Publisher: Lawrence, Erlbaum Associates
Name of Visual Creator (as appropriate): Tania Rowlett

Additional notes (if applicable): Possible underlining/marking visible which could not
be removed from the original document.

Document scanning reference: MSPSSOCDS_DOCTQ09 - Doc 17

Date Scan Produced: 29 July 2010

1

Understanding Task Analysis
for Human-Computer
Interaction

Dan Diaper
Bournemouth University

Task analysis is at the core of most work in human-computer interaction because it is concerned
with the performance of work, and this is what, crucially distinguishes it from other approaches.
A systemic approach is adopted to describe the properties of the models used in task analysis.
The roles of task analysis in HCI and software engineering are introduced before practical
issues, concerning how to perform the typical, early stages that are common to most task
analysis methods, are addressed. The main example used throughout the chapter involves air
traffic control and the theoretical and practical issues are finally illustrated within a method
called systemic task analysis. - - :
The goal of this chapter is to provide and illustrate the fundamental concepts that underhe
task analysis so that its readers will subsequently find that task analysis is easy to understand.

1.1 TASK ANALYSIS IS EASY

tf'he claim that *“task analysis is potentially the most powerful method available to those working
i H.CI and has applications at all stages of system development, from early requirements
- specification through to final system evaluation,” is Diaper’s (1989a) conclusion. Although
not disputing the potential of task analysis Anderson et al. (1990) suggested that “confusion
reigns” and that “designers and human factors specialists fumble with the concept” of task
analysis. If you agreed with Anderson et al. a dozen years ago, then, until you've read this
chapter, you will probably still agree with them. The purpose of this chapter is to demonstrate
that task analysis is easy to understand. This, of course, is a lie.
- If you really want to understand the task analytic perspective on HCI, then one must have
a reasonable competence in at least philosophy, psychology, sociology, ergonomics, and of
Course computing. On the other hand, although these disciplines may be part of the essential
Pl‘Ofe?sorial armory, there is only a limited global need for theoretically driven academics,
notwithstanding how necessary it is to have a few of them, so that most people interested in

5

6 DIAPER

task analysis, and virtually all practitioners who want to use task analysis, do not need the
arcane baggage of the theorizing academic. It is desirable, however, to recognize where such
arcana fit into task analysis, and this chapter marks at least some places where some truly
complex issues are relevant.

This chapter is unashamedly systemic, although this is not a novel approach. Shepherd
(2001), for example, starts his book on hierarchical task analysis (HTA) by presenting a systems
approach, and both the HTA and Goals, Operators, Methods, and Selection Rules (GOMS)
methods are located within a systemic approach in the chapters of this handbook that describe
them (chaps. 3 and 4, respectively). A particular style of systems mode] based on Checkland’s
(1981) soft systems methodology (SSM} conceptual models (Diaper, 2000a; Patching 1990},
is used throughout the chapter in conjunction with Dowell and Long’s (1989; Long, 1997)
general HCI problem. Although a number of different examples are wsed in this chapter, the
main one involves air traffic control (ATC).

1.1.1 Chapter Summary

If this chapter were a sentence, there would be a semicolon between sections 1.4 and 1.5. The
first half of the chapter introduces the architecture of a systemic model (section 1.2); describes
how this must be extended to model the performance of work, which is the core concept for task
analysis, and explains why task analysis is at the heart of nearly all HCI activities (sec. 1.3);
and then places task analysis in the context of HCI and software engineering (section 1.4). The
second half of the chapter (section 1.5) addresses the use of task analysis in computing-related
projects (section 1.5.1) and then introduces the common first stages of most task analyses,
although some methods do use these stages in more or less an abbreviated form (section
1.5.2). A new task analysis method, systemic task analysis (STA), is introduced at the end
of the chapter (section 1.5.3) to illustrate both the theoretical and practical issues discussed
throughout.

Task analyses produce one or more models of the world, and such models describe the
world and how work is performed in it (section 1.2). Descriptive models of the world consist
of two types of entity: things and the relationships between things. Things can be physical or
intangible, and most things are parts of other things (section 1.2.1). Intangible things include
mental and software processes, emergent systemic properties, and models that are information
rather than physically based. Task analysis models are among the intangible things.

Relationships between things in models are of twe sorts: conceptual and communicative
(section 1.2.2). Conceptual relationships (section 1.2.2.1) typically concemn classifying things.
Many taxonomic systems, including those nsed in task analysis, use a hierarchical structure,
although, it is argued, much of the natural world is not truly hierarchic and would be better
modeled as a heterarchy, using a “level of abstraction™ concept while allowing things to have
multiple memberships in other things. Communicative relationships in descriptive models of
the world (section 1.2.2.2) involve how different things affect each other. Adding these relation-
ships to taxonomic ones reinforces the suggested advantages of heterarchies over hierarchies
and allows the introduction of the basic systemic model, based on SSM, used throughout the
rest of the chapter.

What makes task analysis in HCI distinctive is its primary concern with the performance of
systems (section 1.3.1), and performance in task analysis is fundamentally about doing work
to achieve goals (section 1.3.2). (Dowell and Long’s 1989; Long 1997) general HCI problem
distingnishes between the work system and its application domain. A work system in HCI
typically is made of people, including users, and computer systems and usually other things
as well. Work is performed by the work system so as to change its application domain, and
it is successful if the changes meet the goals of the work performed. Complex systems will

1. UNDERSTANDING TASK ANALYSIS 7

contain nmerous overlapping work systems and application domains (section 1.3.3), and it is
necessary for task analysts to appropriately identify the work system and application domain
of interest.

This chapter defines HCI as an interdisciplinary engineering discipline that is a subdiscipline
of ergonomics (section 1.4). Furthermore, it suggests that the historical division between HCI
and software engineering is unfortunate, as both study the same sort of systems for similar
engineering purposes. It then introduces two views of HCI, one broad and the other narrow
(section 1.4.1), and relates these views to different definitions of work systems and application
domains. Task analysis needs to have models of people’s psychology within the systems that

. are studied, and the chapter therefore discusses various styles and types of cognitive model
(section 1.4.1.1). Task analysis must also consider the psychology of those who are involved in
computing-related engineering projects, as they are either the final end users of task analysis
methods or users of the results from task analyses (section 1.4.1.2).

Software engineering’s solutions to the software crisis have been primarily anthropocen-
tric because the crisis is one of human productivity (section 1.4.2). Its solutions have been
to develop methods for working on software projects and to support many of these meth-
ods with computer-assisted software engineering (CASE) tools. The roles of task analyses
need to be located within the software life cycle. Within projects, task analyses vary in their
fidelity (i.e., how well they relate to the assumed real world) and are best thought of as al-
ways studying simulations or selected examples of their world of interest (section 1.4.2.1).
The chapter emphasizes the importance of the concept of agent functionality and discusses
the allocation of function between different things in a work system (section 1.4.2.2). It also
points out the need for task analytic representations to be device independent in the context
of abstracting task representations and discusses the possible role of goals in such abstraction
(section 1.4.2.3).

 The second half of the chapter starts by arguing that task analysis can be of use in most
stages of any computing project (section 1.5). Stressing that any practical method must involve
considerable iteration (section 1.5.1.1), the chapter suggests five questions that should precede
undertaking a task apalysis:

. Which project stages will use task analysis? (section 1.5.1 and 1.5.1.1)

. What knowledge is the task analysis intended to provide? (section 1.5.1.2)
. What is the desirable task analysis output format? (section 1.5.1.3)

. What data can be collected? (section 1.5.1.4)

. What task analysis method? (section 1.5.1.5)

(¥ I - SU S R

Following discussion of these five questions, the chapter describes the firsts two stages of most
task analysis methods: () data collection and representation (section 1.5.2.1) and (b) activity
list construction and the classification of things (section 1.5.2.2). It is after these stages that
different task analysis methods diverge (section 1.5.2.3).

To illustrate these early common stages, it is necessary to choose a method and notation.
?;YStCmiC task analysis (STA) is used because it has been developed from the ideas exposed
in the first half of the chapter (section 1.5.3). In describing its first stage (section 1.5.3.1), the
chapter uses the ATC example previously introduced but adds more project-specific details.
The chapter describes how video data might be collected in an ATC tower (section 1.5.3.2),
constructs a sample fragment of an activity list from these data, and proposes that sometimes
such construction is sufficient task analysis in some projects or project stages (section 1.5.3.3).
Although STA uses 2 formal, heterarchical modeling method, the chapter offers the start of a
hierarchical analysis of the fragment of the activity list (section 1.5.3.4) to illustrate how task
analysis methods might proceed following the fairly common early stages.

1.2 DESCRIBING THE WORLD

Does the world exist? The philosophical tradition of solipsism denies that this question can
be answered, and even Descartes’ proof of his own existence, encapsulated in his famous
phrase “Cogito ergo sum” (I think, therefore I am), has for many years been recognized as
a conclusion based on a fanity argument (Watling, 1964). Science and engineering, however,
traditionally require belief in a real world external of the mind. The position of the author,
which he calls pragmatic solipsism, is an intermediate one. It treats the world’s existence as
an assumption, and one corollary is that all that can ever be known about the world are merely
models. Such models of the world can be compared, and some will be preferred over others
for some purposes. In science, for example, Ockham’s razor might be applied to choose the
simplest of two equally good competing theories, although this begs guestions of what is meant
by “simplest” and “good.” This chapter is based on the pragmatic solipsist assumption and
argues that one useful class of models of the world for engineering purposes consists of the
task analytic ones. It then attempts to elucidate the common nature of this class of model while
recognizing that no model of the world can be proved to be true. It thus admits alternative
models, which might be called perspectives (se¢ also, e.g., chap. 7), and allows that some wili
be better suited for some purpeses than others.
At the core of any task analytic model there are two things:

1. A description of the world.
2. An account of how work is performed in the described worid.

It is the latter of these that differentiates task analysis from approaches that are primarily
descriptive. These two are sometimes combined, but it is almost certainly easier to maintain a
conceptual separation between them, as this chapter does. -

A model is a description of the assumed real world. A painting or a poem can be a model
of the world, as can the sorts of diagrammatic, logical, or language-based models used in
HCI and software engineering. Design requires two models of the world: a current one and a
futare one. Design is a goal-directed activity involving deliberate changes intended to improve
the current world, so the need to model the future in design is unquestionable. In practice,
models of possible future worlds need to be based on models of the current world because
the world is a very complicated piace and accurately predicting the future muost accommo-
date its complexity (see also chap. 30). In addition, constructing a model of the current world
is easier because the current world can be observed and because the model can often be
scientifically tested to determine if what the model predicts to be the case is actually so.
For example, an analyst might construct a model of the current world that predicts that on
web pages animated images surrounding text will interfere with the task of searching the
text for information, as Zhang (1999) proposed. This prediction could be tested using typi-
cal realistic web pages, as Diaper and Waelend (2000) did. They found that the prediction
was false. As Alavi (1993) stated, “Most research studies have been conducted in Jabora-
tory settings that limit the generalizability of their findings to more complex organizational
settings.” :

In contrast to laboratory-based science, task analysis creates its models of the current world
by studying it in situ. Famously, it involves the observation of people performing their tasks
in an environment as realistic as possible. The performance may be documented using video
cameras or by taking notes. Task analysis can also make use of other data collection methods
(section 1.5.1.4; Diaper, 1989a) such as interviews (e.g., chap. 16), immersive methods such
as those used in ethnography (see chap. 6 and 14), or various forms of invented scenarios (see

chap. 5).

}. UNDERSTANDING TASK ANALYSIS S

Unfortunately, since descriptions of the world in HCI include people in complex social and
organizational environments, truly accurate prediction of any postdesign future is virmally
impossible, not least because people often (2) adapt their bebavior to designed changes, (b)
alter other aspects of the world to accommodate what has been designed, and (c) change
and use what has been designed in ways unanticipated by the designers. As Sharples (1993)
commented, “The way designers intend technology to be used very often differs from the actual
users’ behavior” (p. 67).

Prototyping approaches (section 1.4.2) offer only a partial solution to the problem of pre-
dicting postdesign worlds (Carroll, 1991), and the underlying rationale for providing the best

. possible model of the current world is firstly one of cost, as the fewer cycles of prototyping
required to achieve a satisfactory design, the cheaper will be the overail design exercise. Per-
haps even more importantly, design is less likely to fail the more accurately the future world
can be predicted, and a model of the future will almost certainly be more accurate if the model
of the current world is accurate.

Descriptive models of the world tend to be constructed from two general classes of
entity:

1. Things.
2. Relationships.

The next two subsections introduce these basic components. The discussion ignores time and
even sequence and therefore the performance of work, which is introduced in the next main
section (1.3).

1.2.1 Things

A model represents the world as being made of something, varicusly called things, objects,
entities, items, components, pieces, parts, atiributes, properties, and so forth. In HCI the sorts
of things that are used in its models include people, computer systems. and usually other
things as well. Things can be parts of other things, so that & user-computer interface might be
considered to consist of things called computer output and input devices, such as a screen and
loudspeakers and a keyboard and mouse.

Although it is reasonable from a systemic perspective to treat people as just another sort
of thing, they have a special status—and not just because they are far more complicated
than anything else, to the point that they do not even understand themselves (Diaper, 1989b,
2002a). People individually possess moral attributes, and cannot be treated like other things.
For example, unlike computers, they camnot be legally turned off (killed) or intentionally
damaged. In addition, people as individuals must ultimately be considered as moral atoms,
cven t.hough moral issues often involve two or more people. For example, we might consider
a particular political system to be immoral, but our reason [or viewing it as immoral is likely
to be its harmful effects on some people.

Most models of the world contain some things that have an assumed tangible, physical
rcahty. (i.e., they can be perceived by the five human senses), and usually such things provide
4 starting point for model building. Many things in HCI models, however. are intangible, most
f’b"“’“ﬂ)’ things that are mental or are software. Similarly, the concept of intangible properties
'S central to systemic models because, as Patching (1990, staied, "It is not possible to see, hear
Ortouch a social, or political. or industrial refations system™ (pp. 9~10). Of conrse, this leads to
some fundamental philosophicai prebiems ha while of interesi iv the iheurizing acadeinic, are
not germane 1o the practice of task analysis. From a pragmatic point of view. what is important

10 DIAPER

inthem). Analysts’ models of the world are one example that fall into this category of intangible
thing. Similarly, software can also believe things about the world, although the tendency is to
blame the programmers. For example, prior to the 2K revisions, many programs believed that
“po person is older than 100 years” and were automatically going to assign the age of 1 year
to people born in 1899 upon the arrival of the new millennium.

Many of the things used in HCI and task analysis are described as information rather than
physically. Although, for convenience, it is common for physical things to be described as
containing information, care needs taking with the concept of information, as this is not realty
a property of a physical thing but of some other thing, usually an agent, that perceives the
physical object. This is obvious when one considers the different information supposedly
contained in a document perceived by a person who understands the language in which the
document is written and by a person who does not. Apart from physical and informational
descriptions, things can be described in other ways, depending on the perspective chosen by
the analyst (e.g., money, power, or responsibility). These alternatives, however, tend to be
used in only a small percentage of task analyses. That still leaves a wide range of different
perspectives to choose from. This chapter assumes that psychological, sociological, and other
such perspectives are basically information-processing ones, even when their focus is on, for
example, affective issues (see chap. 29), because affect changes a person’s view of the world,
as Nussbaum (2001) argues. Section 1.5.3.3 presents an example in which the psychological
property of trust between coworkers is important. Chapter 14 describes other sorts of relevant
psychological properties, such as fatigue effects, and chapter 28 reviews psychological theories
and models in detail. Although Checkland’s SSM is celebrated for its multiple-perspectives
modeling of the world, the integration of different perspectives remains a problem that, except
in some specialized cases such as physical reductionism (Diaper, 1984), is epistemologically
intractable and only soivable by the application of the analyst’s craft skills (Long, 1986; Long &
Dowell, 1989). _

Just what is a thing is a complex metaphysical question (c.g., Lowe, 2002). Ignoring meta-
physics, however, in practice task analysis traditionally divides its things into two main types,
objects and actions (Diaper, 1989¢). Often objects are further categorized as agents or things
used by agents. Actions, of course, are what agents do, alone or with their objects and other
agents. An activity list line, which can be used to describe a task step (as recommended in
section 1.5.2.2), typically has a single agent, a main action and perhaps some subordinate ones,
and the recipients of the action (i.e., objects and other agents). People generally seem to un-
derstand what is meant by an agent, and some methods in the task analysis literature describe
actions and objects as verbs and nouns, respectively, although this is only an approximate
metaphor. Still ignoring the truly complex metaphysical issues, the key property of agents is
their ability to initiate behavior whereas other objects are passive (see also chap. 26). For ex-
ample, a person putting words down on paper is an agent performing the action of writing, and
the passive objects are the pen, ink, and paper. If the paper is given to someone else toread, then
its transmission is another task, initiated by one agent and-with another as the recipient, even
though some properties of the paper (e.g., its location) have also changed. Probably the real
difference between agents and other objects is that the latter have processes that are adequately
describable by the physical sciences (physics, chemistry, some biology, eic.) whereas agents
have processes that, because they involve emergent properties (section 1.2.1) or cognitive or
computer information processing (e.g., chap. 15), require other sciences 10 be brought in. One
conceptual difference between using a word processor rather than pen and paper is that with the
word processor the writing is to another agent—the computer system. Thus, dialogue-based
models are common in computing applications whereas they are not used for objects describ-
able by the physical sciences alone. Other sorts of classifications of things are possible (e.g.,
some things can be classified as triggers; see chaps. 14 and 19).

1. UNDERSTANDING TASK ANALYSIS b

1.2.2 Relationships

All things in a model have at least one relationship to another thing and cften more than one
relationship with other things. Isolates that have no interaction with anything can have no effect
on the rest of the system and so can be legitimately ignored.

Although the following distinction may not be absolutely true theoretically, it is useful to
classify relationships between things in models as of two types, conceptual and communicative.

1.2.2.1 Conceptual Relationships

Concepiual relationships are typically taxonomic (see chap. 20 for a discussion of taxonotnies
and classification schemes). Probably the simplest type of conceptual relationship concerns
what things are made of, and these are typically modeled hierarchically (Diaper, 1984). Thus
the user interface mentioned in section 1.2.1 is_made_of a computer output and input system
that is_made_of the screen and loudspeakers (output) and the keyboard and mouse (input).
Similarly, the computer systern is_made_of the user interface and other unspecified computer
hardware and software things and the complete system includes a computer and a user and
the environment in which the user and computer system operate. Figure 1.1 illustrates this
hierarchy using a tree diagram and a Venn diagram, which is a graphical representation of a
formal, logical model based on set theory, the foundation of all modern mathematics (Ross &
Wright, 1988). The two represeniations are logically identical (Diaper, 2001a); that is, they
contain exactly the same information but in a different graphical format.

Other types of relationship may be used for taxonomic purposes, for example, kinship or
the “is_similar_to” relationship. The latter can be a complex relationship if things are judged
to vary on more than one attribute (an attribute is a property of a thing as well as a thing itself).
Bowker and Star {2000) present a compelling case that taxonomic systems are common and
important in most areas of human endeavour. Furthermore, not only do classification systems
get used alone, they also form the basis for more complex types of models of the world,
including task analytic models. '

Conceptual relationships do not have to be specified hierarchically, although this is common
in many HCI and software engineering methods and justified on the basis that people find
hierarchies naturally easy to understand (see de Marco, 1979, on the design of data flow
diagrams (DFDs)); Paterno, in chapter 24, claims that people’s understanding of hierarchies is
“intuitive”” Diaper (2000a, 2001a, 2001b) has suggested the neologism heterarchy to describe
models in which a thing is related to more than one other thing (see Fig. 29.1 for a simple
example). In a tree-style model, such as Fig. 1a, heterarchical conceptual refationships can be
represented either by repeating nodes in the tree or by allowing child nodes to have more than
one parent node. This is not, however, an elegant solution, as is discussed below.

Although most things engineered by people do have a hierarchical design, it is far less
char that the natural world and our social worlds are arranged hierarchically (Diaper, 20002).
Blo!ogists, for example, have found many an organism that is “incertae sedis meaning that its
position in the classificatory system is uncertain” (Clark & Panchen, 1971). Diaper (20012)
demonstrated that even a simple office system’s organization of people’s roles needs to be
modeled heterarchically when roles are shared. Thus, although hierarchically arranged DFDs,
for example, may be appropriate if used to describe some types of software, it is of concern that
methods such as HTA and many of the task analysis methods classified in chapters 6, 22, 24, and
25 may be forcing an inappropriate hierarchical organization on to their model of the world.
In contrast, from its inception in the early 1980s, task analysis for knowledge descriptions
(TAKD; Diaper, 1989c¢; Diaper & Johnson, 1989). used a heterarchical representation of a tree

Wifh nodal repetition, although it was mislabeled a hierarchy for a Jong time by its developers
(Diaper, 2001b).

12 DIAPER

System

(a) [
I i |
Computer Environments User
I
[i
Other User Intecface
]
f |
Computer Output Computer Input
|
| | I l
Screen Speakers Keyboard Mouse
®) System User Interface Computer
Keyboard
User Mouse
Screen
Speakers ot
Computer Outpaut
FIG. 1.1. Both (@) and 1(b) show the logically identical conceptual relationships be-

ween some components of a system that involves a computer and a user. Figure i{a)
represents this as a tree diagram and 1{b) as a venn diagram. Note that the size and
shape of the sets represented in a Venn diagram are not meaningful.

Given the familiarity that most people have with hierarchical models, then the currect
practical advice is to start with a hierarchical structure but, when confronted with something
incertae sedis, to consider moving to a heterarchical moedel. Using hierarchical models does
have the advantage of forcing analysts to determine whether some thing is of one sort or another
and thus encourages careful thought about things. There are times, however, when classification
decisions have to be contrived, and beterarchicies provide a logical alternative that need not
compromise a mode!’s validity for the sake of maintaining a hierarchical strmcture.

1.2.2.2 Communicative Relationships

In a communicative relationship, two or more separate things communicate with or affect
one another is some way. Cornmunicative interactions require another type of thing, as all
interactions between things are mediated by something. For instance, light from a2 computer’s
screen is the physical thing that links the screen to the user’s eyes, and mechanical energy is

1. UNDERSTANDING TASK ANALYSIS 13

System
Envi ents > User Interface
4 < Computer Input Computer
Y3 » Keyboard >
: Mouse —1>
User
Screen
Speakers -
Computer Output | _ 4 |
| Other ¥

FIG. 1.2. A Venn diagram model of a sysiem consisting of a user and & COMpLier. The
diagram shows the communicative relationships between the things in the model.

transferred between fingers and keys on a keyboard. In HCI, it is usual but not universal tc
represent communicative things (mediators of communicative relationships) as information
that is being transmitted.

There are clear advantages to using a Venn diagram (Fig. 1.1.b) for modeling purposes
rather than a tree diagram (Fig. 1.1.a). Among the pluses, communicative things can be added
easily to the taxonomic structure using a quite different graphical notation to that representing
conceptual relationships {see Fig. 1.2). In Fig. 1.2, the communicative things are represeated
by unlabeled arrows that overlay the hierarchical representation of Fig. 1.1.b. Thus, Fig. 1.2 s
no longer a hierarchy but a heterarchy. That is, the communicative relationships can be within
or between hierarchic levels, although only those that jump levels are shown in Fig. 1.2.

Not to label and describe arrows is too common a sin in HCI and software engineering
modeling activities. The problem is that arrows often represent different types of thing. Diaper
(2000a) argued that if defining arrows is a necessary requirement for simpler, single-perspective
models such as DFDs, it is even more necessary for multimedia and multiple-perspective
models. Mustrating such semantic differences, in Fig. 1.2 the input devices provide immediate
kinaesthetic feedback to the user as they are touched or moved. The mouse is modeled as a
two-function input device (movement is separated from button clicking), but whether there
are two types or only a single type of feedback may depend on mary things, including the
hature of the task and the expertise of the user. The computer does not provide feedback to
the input devices (i.c.. the devices do not “know” whether they are connected 1o the computer
or not). The keyboard's Caps Lock and Num Lock keys are represented by a circular amrow
FD md_icate that they affect what the keyboard sends to the computer but do not themselves
send information to the compuier. Figure 1.2 does not show a relationship from the user 1o

14 DIAPER

the computer ontput devices. The rationale for this is that, although the user may engage in
attention-directing, orientating behaviors toward the output devices, nothing is communicated
to the devices (i.e., a screen or loudspeaker does not know whether anyone is attending to
its output). In many cases it is important not to forget these user behaviors and they can also
be indicated, as in Fig. 1.2, by a circular arrow. The circular arrow might represent behaviors,
such as head and eye movements, that are potentially observable by a task analyst as well as
human attentional processes (see chap. 15) that are psychological and can only be inferred.

Users do not interact only with their computer systems but inhabit a rich, complicated
environment made of other things, often including other people. The same is true of computer
systems. Fig. 1.2 has not decomposed the environment of either the user or the computer
system. It should be noted, however, that some aspects of the “environments™ may be shared
by both user and computer and that some, usually most, will be unique to just one of these. If a
decomposition using a hierarchical representation is attempted, it will fail or at best be clumsy
because of the shared things in the environments. Heterarchical models, which allow things to
be components of more than one higher level thing, avoid this problem. ‘

Figure 1.2 is potentially a systems model. It follows the conventions of SSM conceptual
models but is drawn to stricter criteria, based on DFDs, than is common in SSM (Diaper, 2000a).
Itis, however, a static, atemporal model. That is, it describes the world independently of ime or
even sequence and therefore independently of events, because events must occur in time. It is
common for analysts to run such a static model in their minds similar to the way programmers
run the code they are writing in their minds (in both cases to predict run-time performance).
This is doing an implicit task analysis because it is modeling system performance. Diaper,
McKearney, & Hurne, (1998) argued that in realistically complicated systems an implicit task
analysis is always likely to be done poorly, and they presented their Pentanalysis Technique
as a method for turing implicit task analyses into explicit ones.

1.3 PERFORMANCE AND WORK

Task analysis focuses on the performance of systems. Annett and Stanton (1998; see also
Diaper, 2002b, 2002c) suggest this when they state that task analysis is the collective noun used
in the field of ergonomics, which includes HCI, for all the “methods of collecting, classifying
and interpreting data on human performance” (p. 1529). Perhaps becanse both Annett and
Stanton have a psychology background, they emphasize “human performance.” From a systems
perspective, it would be preferable to alter the definition to read thus:

Task aunalysis is the collective noun used in the field of ergonomics, which includes HCI,
for all the methods of collecting, classifying, and interpreting data on the performance of
systems that include at least one person as a system component.

The two key concepts in this definition are performance and data. Performance is how a system
behaves over time. A datum is the description of some part of a system at a point in time, and
data may be collected over time and from different parts of the system.

1.3.1 Performance

The performance of a system is how it behaves over time. Systemic time can be characterized as
a series of instants each representing the system in a particular state. Systems that have human
and computer components have many more instants than can possibly be observed, so what
is available to analysts is a series of snapshots of the state of the system with missing states

1. UNDERSTANDING TASK ANALYSIS 15

between these, like the frames of a cinema film. In practice, what is available to analysts as data
is the representation of the state of only one or a very small number of system components. To:
extend the cinema film analogy, the analyst cannot see all of any frame but only one or a few
areas of it. Thus, all but the most trivial systems will appear to operate in parallel. That is, at
each instant more than one component of the system can be expected to have changed in some
way, and the analyst cannot know the states of all the components that do change from instant to
instant. The problem is the same one that bedevils testing any large software system but worse,
that a system state is possible that prevents the expected operation of a part of the system being
observed and so making it difficult to identify the cause or causes of the unexpected system state.

Figure 1.2 can be used to illustrate this. The user can be observed pressing keys on the
keyboard and we could test the ASCII string that is sent from the keyboard to the computer
and so on until each character is echoed on the screen. Usually, as far as the vser is concemed,
this echoing loop from keyboard to screen is instantaneous, but sometimes it is perceptibly
slow, sometime frustratingly so, for example, when the other computer components place a
high demand on computer-processing resources.

One obvious question for user interface designers in the above scenario is, How slow can
echoing be, in particular situations, without causing the user some sort of problem? This type of
question is at the very heart of task analysis; as Annett, in (chap. 3), proclaims of HTA, the focus
should be on solving problems. The issue is how to define “satisfactory performance” for a sys-
tem and its components. The concept of work is critical to defining “satisfactory” in this context.

1.3.2 wWork

Dowell and Long (1989; Long, 1997) have produced perhaps the most sophisticated framework
for the discipline of HCI. Their general HCI design problem can be characterized at a high
level as having two system components—a work system and an application domain—in an
environment. Figure 1.3 illustrates the basic model, which can be described so: '

Work is achieved by the work system making changes to the application domain. The ap-
plication domain is that part of the assumed real world that is relevant to the functioning
of the work system. A work system in HCI consists of one or more human a2nd computer
components and usually many other sorts of thing as well. Tasks are the means by which
the work system changes the application domain. Goals are desired future states of the ap-
plication domain that the work system should achieve by the tasks it carries out. The work
system’s performance is deesned satisfactory as long as it continues to achieve its goals in the
application domain. Task analysis is the study of how work is achieved by tasks,

System
Application Work
Domain = System
L
Communicative

Relationships

FIG. 1.3. The general model of work, based on Dowell and Long (1989; Long, 1997).

16 DIAPER

Dowell and Long’s conception is that tasks are not performed within the work system but
by the system as it acts on the application domain. Furthermore, the communicative relation-
ships between the work system and application domain may be what changes the application
domain, but they are not the same as the work performed, becanse work is defined in terms
of the achievement of goals. Consequently, describing the communicative relationships is not
sufficient for describing a task. Anpett (chap. 3) comes to a similar conclusion when he states
that “simply to list actions without understanding what they are for can be misleading.” What is
needed for task analysis is an understanding of how the communicative relationships arise in the
work system and how they cause changes within the application domain—and, of course, vice
versa (i.., how feedback from the application domain arises and then affects the work system).

Throughout this handbook, the concept of goals is closely tied to that of tasks, and goals are
nearly always described as being psychological, in that it is people who have them. In contrast,
in the systemic version of Dowell and Long it is the work system that has goals, which specify
the intended changes in the application domain. The advantage of this view of goals is that it
recognizes that nonhuman things can have goals. In SSM, nonhuman goals reflect one aspect
of what are called “emergent properties” of a system. Organizational systems, for example, can
have goals that may be different from those of any individual person within the system. This
is not a controversial claim in systernic approaches such as SSM or in any approach that uses
an organic metaphor for organizational life. Certainly very few, if any, employees of a large
business have a personal goal such as “increase market share,” although this might well be a
good partial explanation of the business’s behavior with respect to its external environment
(i.e., its application domain). Furthermore, this view of goals allows parts of an organization
and individuals within it to have different goals and even ones that conflict. Indeed, a great deal
of collaborative work is focused, not on achieving common goals, but on resolving conflict
(Easterbrook, 1993; Shapiro & Traunmuller, 1993). Similarly, this view of goals makes it
reasonable to suggest that things like computer systems can have goals scparate from those
of their users, a point explicitly made in chapter 26. Thus a business computer might have as
a goal “to maintain client database accuracy” and attempt to achieve this by forcing users to
operate in a way that they resist, perhaps because it requires more effort from them than they
wish to expend. Although it has been suggested that goals in a computer system are simply
those of its designers (Bench-Capon & McEnery, 1989a, 1989b), the alternative is that large
computer systems possess properties, perhaps emergent ones, unanticipated by their many
designers (Barlow, Rada, & Diaper, 1989; see also sec. 1.4.1.2).

Itis probable that one of the main confusions that has arisen in task analysis over the years has
been the assignment of different types of goals to individual people rather than to work systems.
One goal of a data entry clerk, for example, might be “to achieve ail the data entry work assigned
as quickly as possible with a detectable error rate acceptable to management so as to obtain
a bonus payment.” In this case, the computer system (and perhaps the management checking
function) is the clerk’s application domain, and the clerk, the documents containing the data and
other things, and the management, office, and social environments constitute the work system.
Confusion arises, however, if the clerk is also taken to have the organizational goal “to increase
market share.” This is clearly not the case (if it were, bonus systems would not be necessary).
Note that this argument is based on the psychological assumption that possession of a goal pro-
vides motivation, or willingness to act to achieve the goal (for further discussion, see chap. 15).

Teleology is that branch of philosophy concemed with causes, reasons, purposes, and goals.
Goals are included because they are future desired states that require the same causal model.
In the case of a goal, its achievement, which will occur in the future, can be caused by
events happening now. Task analysis is generally mono-teleological in that behavior, partic-
ularly that defined through low-level, detailed descriptions, of behavior, is commonly repre-
sented as being caused by a single. goal. Most of the chapters in this handbock promote a

1. UNDERSTANDING TASK ANALYSIS 17

mono-teleclogical philosophy. A hierarchy of goals, as used in HTA, consists of muitiple re-
Jated goals, but a person can also perform an action on the basis of unrelated goals. Furthermore,
unrelated goals that nonetheless motivate the same behavior cannot be simply prioritized in a
list, because different goals have more or less motivational potency depending on their specific
context.

For example, a chemical plant operator’s unrelated goals for closing a valve might be (1)
to stop the vat temperatare rising, (2) to earn a salary, and (3) to avoid criticism from the
plant manager. The first might concern the safety of large numbers of people, the second is
sociopsychological and might concern the operator’s family responsibilities, and the third is
personal and might concern the operator’s self-esteem. These three goals correspond to different
analysis perspectives, the sociological, the sociopsychological, and the personal psychological;
and there are other possible perspectives as well. Farthermore, people might have different
goals within a single perspective.

Of course, the principie that any given behavior is likely to be caused by multiple goals can
be extended to any complex work system, as discussed above. At the least, task analysts should
be cautious whenever the explanation of the behavior of a work system is ascribed to a single
goal, because there will probably be many, within and across different perspectives, and a set of
goals will be prioritized differently in different contexts. Nor is a first-past-the-post threshold
model likely 1o be satisfactory, as a combination of goals, rather than a single one, will most
often reach some notional threshold and so trigger behavior. In the chemical plant operator’s
case, the usnal main reasons to close the valve might be to avoid management criticism and
ensure receiving a salary, but after an argument with the manager about salary, the operator’s
main goal might become protection of the health of people at risk from a chemical accident.
If the latter now more strongly drives the operator than the other two goals, we might want
to be guite sure that the operator is aware of the safety issues, which he or she might not be
if the main motivating goals had previously been to avoid management criticism and ensure a

Figure 1.4 provides a concrete but highly simplified example in traditional air traffic control
(ATC). Chaps. 13 and 25 describe more modern computerized ATC systems. The application
domain contains things like aircraft, weather, and so forth. The goal of ATC is to facilitate the
safe and expeditious movement of aircraft, and this is both an organizational goal and one held
by many of the workers. It is doubtful, however, whether it is one held by the canteen staff,
for example, even though they could affect the accomplishment of the organizational goal if
they fail to achieve their own goals, for examples concerning food hygiene. The simplified
ATC work system in Fig. 1.4 consists of various people, the flight strip system, radar, radio
and normal telephones, and so forth. The ATC work system carries out tasks intended to meet
the ATC work system goals of the safe and expeditious movement of aircraft in the application
domain. The concept of a goal is further explored in chap. 30, which takes a more radical
Position on the concept than that presented here.

One important representation of each aircraft in an ATC work system is the flight strip,
which records the status of each aircraft and is updated by the ATC officer (ATCO) or the flight
chief, who between them have responsibility for the aircraft represented by the flight strips in
front of them. Sample flight strips are shown in chapter 19. Updating a flight strip is not a task
thhe ATC work system. It’s not an ATC work system task because its performance does not
directly change the application domain; that is, updating a flight strip does not change the real
Wflrld of aircraft. A particular flight strip can only be correct or incorrect, satisfactory or not,
w‘fh respect to other representations of the information within the ATC work system. The flight
strip has no direct connection with its aircraft. It is conceptualiy related to the aircraft but not
COmI.nunicatively‘ except via other things. (Note that the conceptual relationship is not shown
on Fig. 1.4, but it could be if this was the analyst’s focus). If the ATCO updates a flight strip

I8 DIAPER

ATC System
Other System: 1
i
Application . . i
: Flight Strip Rack 5
% 1
1
Flight Srip !
|
N FightSiip | E
]
- |
1
|
[11
i
]
i
]
i i
S i ===l
] i
] . 1
Remote :) E
Computer 1 1
Syssen : ;
{ 1

System

FIG. 1.4. A simplified model of a traditional air traffic control (ATC) system that uses
paperbased flight strips.

with information that is incorrect with respect to the aircraft that the strip purports to represent
but is correct with respect to the source of the information, say, incorrectiy displayed aircraft
information on a radar screen, then what is incorrect in the system is not the flight strip but
the radar. In safety critical applications such as ATC, there is usually considerable deliberate
information redundancy so that, on the principle of double-entry bookkeeping, information
mismatches have a high probability of being detected. Provided a problem does not escape
from within the ATC work system and that there are no time or other types of penalties incurred,
then it has no effect on the satisfactory performance of work achieved in the application domain
of aircraft movements.

The above example, in which updating a flight strip is shown not to be an ATC work system
task, would appear to present a conundrum, as obviously, if a flight strip is not updated or is
changed incosrectly, the result could be a real world “incident,” what used to be called a “near
miss” between aircraft in the application domain. The solution to this apparent problem with
the Dowell and Long (1989} definition of work involves establishing what to compare the state
of a flight strip with and using a multiple systems mode! that always has a work system and
application domain for each of its embedded models.

1.3.3 Multiple Models

The final piece in this part of the jigsaw puzzle is the concept of multiple work systems
and application domains. In theory, any set of components that have some communicative
relationship, directly or by other things, can be designated by the analyst as constituting either
a work system or an application domain. In practice, analysts will tend to assume that most of

1. UNDERSTANDING TASK ANALYSIS 19

the possible work systems and application domains are not sensible. The minimal criterion to
apply, however, is whether a definition of work is possible.

There are a couple of little theoretical twists that may help in understanding the ideas but
do not usually have great practical relevance. First, with complex application domains, it is
possible to consider reversing the work system and application domain. Although this would
be insane in normal ATC, as it would mean that the purpose of the aircraft movemenis was
to satisfactorily perform work by changing the ATC work system, it is a conceivable method
of testing a new ATC sysiem using real aircraft. Equally insane, at least superficially, is to
suggest that a simple tool like a hammer performs work by changing its user, although the idea
that people adapt to their tools does imply that using a hammer has effects on the hammerer,
and this could be the goal of a tool’s designer. Educational systems, of course, do explicitly
have user-changing goals. The cynical view that real people are driven by bureaucracies or by
computer systems rather than the reverse can be easily understood by switching application
domain and work system. This concept is most useful when there are chains of work systems
and application domains, but care needs to be taken, as ofien the application domain of work
system, is not quite the same as that for work systemg . ,

The second twist is that, although many analysis methods use a hierarchical structure, it is
not necessary to do so, and in many cases it is more valid to use heterarchical models (section
1.2.2). A heterarchy will greatly increase the number of work systems and application domains
that can be considered for analysis. In practice, it is therefore necessary to be careful in defining
both the application domain and the work system of interest. :

Returning to the ATC example, the ATC work system is modeled as containing three of
many possible work systems, the control system, the assistant system, and the flight strip
system. The flight strip system, delineated by dashed lines, includes the assistant system and
part of the control system, and provides an example of a heterarchical system.

The assistant system has a computer, a human assistant, and flight strip components. The
computer receives its input from some other, remote computer and prints a flight strip, which
the assistant then removes and places in an appropriate empty slot in the flight strip rack. The
new flight strip is “cocked” (it sticks out a bit from the other ones), and there is often some
communication, verbal or nonverbal, between the ATCO and the assistant. The assistant system
can be considered as a work system, and its application domain is the flight strip application
domain, which is that part of the control system (including the ATCO and flight strip rack)
that the assistant system communicates with so as to perform work in this application domain.
The work goals of the assistant system are to correctly place flight strips and to ensure the
ATCO is aware of new strips in the flight strip rack. The critical point is that the work of the
assistant system is not directly related to real aircraft or, in this case, to the flight chief, who is
not responsible for checking the arrival of new flight strips.

It is usually an error, and probably a common one, for analysts to jump from identifying
a failure to achieve the task goals with respect to one application domain and work system
to concluding that a similar failure has also occurred with respect to a different, often more
general, application domain. In other words, analysts unjustifiably assume that if a failure
occurs in one part of a system, it will cause a problem in some other part of the system,
usually a problem in a real world application domain, such as that part of the ATC system
that includes aircraft flying around the sky (the application domain in Fig. 1.4). Only in a zero
redundancy system is this assumption guaranteed to be correct. Zero redundancy virtually
hever occurs in real systems involving people because such systems are inherently noisy (i.¢.,
human performance is varjable and prone to error).

To avoid problematic assumptions, analysts need to study the relevant work system with
respect to the goals they wish to refer to. Incorrect information on a flight strip, for example, may
have no effect on the movement of aircraft if such errors are trapped and rectified before they

20 DIAPER

affect the ATC work system goal (i.e., safe and expeditious movement of aircraft). Such errors
may well cause concern to those involved in ATC system design. If only the communicative
relationships between ATCOs and flight strips have been analysed, then rational efforts at
solving work problems, (i.e., based on analysis), can only be directed at these relationships
(e.g., attempts to redesign the ATCO-flight strip interface to reduce the probability of input
errors). If the more general ATC system has been analyzed, then other design options rationally
become available, such as improving the ATC work system'’s ability to detect and correct errors
or reducing the number of possible transmission and transcription efrrors.

1.4 HUMAN-COMPUTER INTERACTION
AND SOFTWARE ENGINEERING

The general assumption throughout this handbook is that the purpose of performing a task
analysis is to improve computer systems and make them better tools for people’s benefit.
HCT’s genesis as a distinct discipline arose in the early 1980s, and from this time HCI has
been recognized as being inherently interdisciplinary and as requiring consideration of both
psychological and computing issues as well as issues in many other areas (Diaper, 19894,
2002a, 2002b).

HCl is a specialized subdiscipline of ergonomics. It is so for two related reasons. First, HCI
restricts itself to the study of systems that have a computer component. Second, HCI's emphasis
has been on human psychology far more than in traditional ergonomics, which started with an
emphasis on matching human and device physical capabilities (see also chap. 28). This shift
of emphasis is related to the view that computers are tools to augment human mental abilities
whereas nearly all earlier tools augmented human physical abilities. In its early days, HCI was
primarily concerned with human cognition, to the extent that Norman’s (1986) classic chapter
is titled “Cognitive Engineering,” although wider issues related to organizational psychology
were pioneered, for example, by Mumford (1983), and issues of social psychology have been
promoted since the development of the field of computer supported cooperative work (CSCW)
in the early 1990s. Furthermore, as chapter 29 argues, consideration of cognitive psychological
issues is not sufficient, even within the psychology of individuals, and emotion (affect), life
style, fashion, and so on, as important aspects governing human perception and behavior, also
need to be taken into account (see also section 1.2.1).

HCI is an engineering discipline rather than a science because its goals are inherently
practical and involve satisfying design criteria (Diaper, 1989d, 2002a). HCI design criteria,
however, although they often involve aspects of computer systems, may also involve altering
human cognition (e.g., by training people) and affect (e.g., by increasing their pleasure and
hence motivation) as well as revising organizational processes and other aspects of application
domains or work systems. As an example of the latter, improved ATC work systems have
changed the ATC application domain so that more aircraft can be safely accommodated within
the same airspace.

Although the roots of computer science are in mathematics (Diaper, 2002a), and there is
scope for formal methods within HCI (Harrison & Thimbleby, 1990) and task analysis (e.g.,
chap. 11 and most of the chapters in part IV), HCI is most closely related to the computing
field of software engineering. Diaperet al. (1998; Diaper, 2002a) go so far as to suggest that no
distinction should ever have been made between software engineering and HCI because both
are engineering disciplines concerned with the same types of systems and their difference is
merely one of emphasis, with software engineering focusing more on software and HCI more
on people.

1. UNDERSTANDING TASK ANALYSIS 21

1.4.1 Human-Computer Interaction

The discipline of HCI continues to be defined in two different ways, broadly and narrowly
(Diaper, 1989d, 2002a). The broad view of HCI is that it is concerned with everything to do
with people and computers. The narrow view is that it is concerned with usability, learnability,
intuitiveness, and so forth, and is focused on the user-computer interface. These two views of
HCI fit neatly with quite different definitions of work systems and application domains (section
1.3). In the narrow view, the application domain is the computer system, and the work system is
the end user and other things in the user’s environment. The users’ tasks, in the narrow view, are
to satisfactorily change the state of the computer system. The consequences of the computer’s
. state change for other parts of the whole system are outside this narrow view of HCI. Hammer
(1984) refers to interface design as a second-order issue and claims it is only relevant when
two computer systems possess equivalent functionality (section 1.4.2.2; but see also chap. 30).
Hammer’s definition of functionality is firmly grounded in the real-world consequences of the
automated office systems he discusses. User interface design issues are a major part of HCI,
but a broader definition of the application domain and work system is needed if real-world
consequences are to be taken into account.

There is a moral imperative associated with the broad view of HCI (Pullinger, 1989). It
is certainly necessary for some discipline to consider the myriad effects that computers have
on people, individually and collectively, and the supporters of the broad view claim that this
discipline is and should continue to be HCIL. The broad view treats user interface design as an
important but subsidiary part of the whole HCI enterprise. Task analysis is at the core of HCI
because of its emphasis on changes made to application domains, which are often in the real
world (i.e., outside of the work systems). Such changes inherently concern system performance,
which is what distinguishes task analysis from other more static, atemporal systems models
{(section 1.2.2.2).

1.4.1.1 The Psychology of Users

Notwithstanding the need in HCI to consider affective, social, organizational, and other such
issues, most of the psychology in HCI and in current approaches to task analysis focuses on
human cognition, and it is human cognition that is the main ingredient of user models in HCL
The point to recognize is that the cognitive psychology of people is much more complicated
than, for example, the information-processing abilities of computer systems and that this creates
a fundamental problem for task analysis. If an analyst cannot understand the operation of a
basic system component (such as the human element), then it is nigh impossible to predict
how the various things in a system will interact and produce the behavior of the system. A
cognitive user model of some type is essential, however, as the Skinnerian-based behaviorist
approach (chap. 3), which treats the mind as a black box and merely attempts to relate its inputs
aud outputs, has since the early 1960s generally been recognized as inadequate for either the
exp!anation or prediction of human behavior. Fortunately (and provided that HCI is treated as
engineering rather than science), it is possible to make use of psychological models of users
that are good enough for engineering purposcs, even if they are inadequate scientifically.

A vast range of psychological user models (see chap. 28 for a review) are employed across
the range of task analysis methods available (for reviews of task analysis methods, see chap.
6, 22,.24. and 25). Admittedly, at one extreme the user models are implicit and resemble
behaviorist models in their concentration on human behavior in a task context rather than on
how mental operations cause such behaviors. The cost of ignoring mental operations is that,
35 soon as analysts move from describing behavior within an existing system to predicting
behavior within new systems, they must rely on their craft expertise in human psychology.
In one sense, all people are expert psychologists because they inhabit a rich, complex social

22 DIAPER

world in which they must be able to understand and predici both their own behavior and that
of other people. On the other hand, people do not do this very well, for otherwise a science of
psychology would be unnecessary or at least could be simpler and more understandable.

Scientific cognitive psychology is not an easy subject to comprehend, even though it has
concentrated on describing the mental architecture common to everyone (usually modeling the
mind as an information-processing device) rather than on the contents of people’s minds. As
an exampie, it focuses on how memory works (architecture) rather than what is remembered
(content). Chapter 15 provides an example of a sophisticated infonmation-processing model of
hurnan cognition that can be used in task apalysis. Although this interacting cognitive subsys-
tems (ICS) model for cognitive task analysis (CTA) well illustrates the complexity and hence
analytical power of scientifically based cognitive models and has demonstrated reasonable
predictive adequacy over a quarter of a century of development, it is by no means universally

' accepted by professional cognitive psychologists, and there are alternative models, such as
ACT-R (Anderson & Lebiere, 1998), that make similar claims to analytical and predictive
capability. Furthermore, radically different cognitive architectures, such as those based on par-
allel distributed information processing (Hinton & Anderson, 1981), also have their supporters
among professional cognitive psychologists.

A useful contrast can be made between the ICS approach and that described in chapter 16,
where it is assumed, probably incorrectly (Diaper, 1982, 1989b), that people have access to
their own mental processes and can describe these when interviewed appropriately. As chapter
19 points out, there is often a considerable difference between what people say and what they do
(see aiso Diaper, 1989a, and chap. 28). Although unsatisfactory from a scientific perspective,
the assumption made in chapter 16 may well be adequate for some HCI engineering purposes,
as people’s beliefs about their own minds are likely to affect their behavior even if such beliefs
can be experimentally demonstrated to be inadequate or even incorrect. Chapter 16 reports
a considerable degree of accuracy in the recall of relevant events in some of the interviews
collected on critical incidents. o R

Between the extremes represented by implicit psychological models and models like ICS
are the more popular cognitive models associated with such task analysis methods as HTA
(chap. 3) and GOMS (chap. 4). Note that HTA is based on the description of tasks as a
hierarchy of goals and that, as Annett says in chapter 3, it “differs radically from earlier
methods of task analysis by beginning, not with a list of activities, but by identifying the goals
of a task.” It is unfortunate that some users of HTA continue to confound psychological goal
states with descriptions of behavior. Consider Annett’s first example: “the goal hierarchy for an
acid distillation plant operator’s task™ (Fig. 3.1) This hierarchy has a high-level goal. (“Inspect
instruments & locate fault”) and lower level ones (e.g., *1.2.4 Start standby pump”). Given that
a videotape could be made of the operator starting the standby pump it is easy to understand
why some people forget that in HTA the object is to describe psychological goals and not
behavior. Remember Annett’s warning, already quoted in section 1.3.2: “Simply to list actions
without understanding what they are for can be misleading” What is really needed in HTA and
in task analysis generally is a language that differentiates psychological things from observable
behavior 5o as to avoid this potential source of confusion. Note that one alternative would be
to assent to philosophical behaviorism (Atkinson, 1988), which should not be confused with
the Skingerian sort. Philosophical behaviorism denies that correctly specifying psychological
things is possible, and it thus can allow observable behavior to stand for unknown psychological
states (Diaper & Addison, 1991). As Diaper (2001b) pointed out, philosophical behaviorism
has not become popular. Nonetheless, it is discussed further, from a more radical perspective,
in chapter 30.

In chapter 4, Kieras states that GOMs is intended as a method to be used after a basic task
analysis has been carried out and that its purpose is “to provide a fomalized representation

1. UNDERSTANDING TASK ANALYSIS 23

that can be used to predict task performance well enough that 2 GOMS model can be used as
a substitote for much (but not all) of the empirical user testing needed to arrive at a system
design that is both functional and usable.” GOMS employs hierarchical decomposition so as
to identify, among other things, “primitive operators,” which may be internal (cognitive) or
external (observable behavior). It then assigns an estimated execution time to each primitive
operator, usually 50 ms for internal ones and longer durations, based on task observation data,
for external ones. GOMS uses a “production system model for human cognition.” This model,
although undoubtedly a misrepresentation of human psychology, predicts task performance
time by simply summing the time associated with each primitive operator. That is, it treats
task processes as independent of each other, although GOMS-CPM (Critical Path Method; see
chap. 22) is claimed to incorporate some parallel cognitive processing. GOMS has enjoyed
considerable success over the years at predicting both task performance time and errors. The
GOMS psychological model of users is thus good enough, usually, for engineering purposes.

In summary, there is no escaping the need for task analysis to include a psychological model
of the human parts of a system. The model used, however, will be adequate if it merely approx-
imates the real, albeit still unknown, psychology of people. After ail, HCI is an engineering
discipline, and its practitioners must do their best to satisfy the practical criteria associated
with particular projects. A number of chapters in this handbook (e.g., chaps. 3, 7, and 17)
suggest that task analysis requires expert practitioners. One reason to believe that it does is
that selecting and then using one or more psychological modeis requires experience and craft
skills (Diaper, 1989¢) and should not be confused with merely folowing the steps of a method,
no matter how well specified or complicated the method is.

1.4.1.2 The Psychology of Computing industry People

Software enginecrs are people too! So are systems analysts, designers, programmers, and even
managers. A specialized branch of HCI was developed in the 1980s and became known as
the psychology of programming (PoP), which is something of a misnomer these days, as the
field covers all sorts of people involved in the computing industry. PoP has the potential to
become a vast field of study, but it remains fragmented and underresearched (Diaper 2002a).
An understanding of computing industry people (CIPs) is of importance to HCI and for task
analysis for two reasons. First, as the producers of compuier systems, CIPs have some influence
over the computer systems that are delivered. Second, CIPs are users of methods and CASE
tools and of the results of these.

Norman’s (1986) classic HCI model identifies models of two types: users’ models of the
system image and designers’ models of the users’ models of the system image. In reverse
order, the system image is everything that the end users can percetve about a computer system
by interacting with it, including its manuals, any training provided, and so on. These users
construct their users” models on the basis of the system image (see also chaps. 18, 19, and 24).
'_I'he computer system’s designers have their own models of the users’ models of the system
image, and Norman suggests that one major source of problems with delivered computer
Systems is that there has been a mismatch between the designers’ models and the users’ models.

F}ltﬂiennore, some of CIPs’ influence on the development of a computer system is implicit;
thatis, people make decisions and perform actions without understanding their basis or perhaps
€ven recogmizing that they've made a decision. Various different styles of working, whether
1 Systems analysis, design, programming, or management, provide numerous examples of
consequences of development that are style dependent and not understood by the workers.
Ca“'?“ (2000) makes a case that design in particular is difficult, is not routine, and is creative,
::edjust Ihe.last of these implies that no two designers or design teams will ever produce quite

Same thing. Indeed, the dispute between Bench-Capon and McEnery (1989a, 1989b) and

24 DIAPER

Barlow etal. (1989) (see sec. 1.3.1.2) hinges on the latter's view that delivered computer systems
have many properties that are implicitly caused by those who do the designing and building of
them, including how these people are managed. The importance of this for HCI and task analysis
is that it partially explains why the performance of computer systems is more complicated
than ever described in their design and development documentation. This chapter has already
suggested that people, as system components, are very complex (section 1.2.1), and perhaps the
complexity of any reasonably sized computer system has also been generally underestimated.

The second reason for introducing CIPs into this chapter is that they are users of methods
and CASE tools, including task analytic ones, and users of the results of the methods, perhaps
because some methods, including task analytic ones, need to be carried out by those with the
appropriate craft expertise (sections 1.4.1.1 and 1.6 and chaps. 3, 4, 7, and 17). Diaper (1989,
2002a) suggested that there is a problem delivering HCI methods to the computing industry.
One of the primary reasons TAKD fajled (Diaper, 2001b) is that it was too complicated to
do; certainly a CASE tool was essential (see also sections 1.4.2 and 1.5.1.5). Diaper has even
suggested that, when designing a method, the designers should determine the method’s design
requirements by modeling its CIP users as much as by looking at the domain of the problem that
the method addresses. TAKD, for example, was originally intended to identify the knowledge
people required to perform IT tasks and so form the input to IT syllabus design. Unfortunately,
it gave too little consideration to TAKD's other potential users. Undoubtedly this caused TAKD
to be too complicated to be successfully delivered to the computing industry, notwithstanding
its flexibility and analytical power. CASE tools may be a good way to facilitate the industrial
uptake of methods, they may sometimes be necessary, perhaps for methods such as TOOD
(chap. 25), but they are not sufficient. The delivery of task analysis to the computing industry
is farther discussed in chap. 30.

1.4.2 Task Analysis in the Software Life Cycle

The discipline of software engineering developed from the recognition in the late 1960s that
there was a “software crisis,” namely, that the demand for quality software had far outstripped
the capabilities of those able 10 produce it. The software crisis remains with us today. Most soft-
ware engineering solutions have been anthropocentric (Diaper, 2002a) and have attempted to
increase software engineering productivity and improve the volume and quality of the software
produced by providing methods of working, organizational as well as software-oriented ones,
and building CASE tools to support some of these methods. Chapters 23 and 24 review a num-
ber of task analysis CASE tools, and most of the chapters in part IV of this handbook, along with
others, such as chapter 7, describe CASE tools that support particular task analysis methods.

The most widely cited early attempt to produce a structured software development method
is now usually referred to as the “classic waterfall model” (e.g., Pressman, 1994; Sommerville,
1989). This model, describes the major stages of software development using labels such as
requirements, design, coding, testing, and delivery. The waterfali aspect is the strict sequencing
of these main stages. Although it is always possible to return to an earlier stage to make
changes, the development must again cascade through all the stages below that one. It is
generally accepted, after much practical software engineering experience, that the earlier in
the waterfall any changes are made, the greater is the additional cost {0 a project. Often the
costs of change are suggested to be an order of magnitude greater for each stage further back
in the sequence. The waterfall model is not now used in most software engineering projects,
primarily because it fails to describe how software engineers actually work, but it continues to
provide a convenient vocabulary to describe the software life cycle.

The waterfall mode]l was followed by many structured software development methods,
such as Jackson Systems Design (JSD; e.g., Cameron, 1983) and subsequently, the overly

1. UNDERSTANDING TASK ANALYSIS 25

complicated Structured Systems Analysis and Design Method (SSADM; e.g., Ashworth &
Goodland, 1990; Downs, Ciare, & Coe, 1988; Eva, 1994; Hares, 1990). A method of this type
defines one or more notations and provides relatively simple descriptions of how to use these.
One general problem is that methods are difficult to describe. Methods involve processes but
most natural languages are declarative, that is, they are much better at describing things than
how things are transformed (Diaper, 1989b, 2001b; Diaper & Kadoda, 1999).

As an alternative to structured methods, various prototyping approaches have been devel-
oped. In a prototyping approach, an incomplete version of the software is developed and tested
in a series of iterations. The hope, of course, is that a satisfactory sysiem will eventually resuit
(see section 1.2 and chap. 7).

" A question that is always relevant is, “Where will task analysis be used in the software
life cycle? The old HCI slogan, “Get the hurnan factors into the earliest stages of a project,”
still applies (e.g., Lim & Long, 1994). In particular using task analysis early and repeatedly
thronghout a project can improve quality and reduce costs. It has also been argued (e.g., Diaper,
1989¢) that the cost of using task analysis is greatly reduced when it is used throughout a
project, as the initial effort of producing the systemic description of the world can be amortised
over the life of the project. For example, if task analysis has been used at the requircments stage,
it should be cheap to use the same mode}, with appropriate minor changes to reflect the devel-
opment of the new computer system, for evaluation purposes, and quality should be improved
because similar problems are being addressed at both these stages (see section 1.5.1.1).

1.4.2.1 Task Simuilation and Fidelity

Howsoever one collects the data for a task analysis of a current system (sections 1.2, 1.5.1.4, and
1.5.2.1), all one ever has is a simulation of the real tasks of interest (Diaper, 2002b; chap. 30).
There are three reasons for this. First, as Carroll (2000) has pointed out, generally there are

* potentially an infinite number of tasks carried out by different people that can be studied, but
only a small number can be selected for analysis. Second, as mentioned in section 1.3.1,onlya
small part of a system can ever be observed so that the task data are always incomplete. Third,
there is nearly always a Heisenberg effect: the act of collecting the data alters what is being
studied. The only circumstances in which a Heisenberg effect would not occur is where the
people or other things being observed are not affected (and, in the case of people, not even
aware they are being observed). Thus, observation and other ways of collecting data about
tasks are not easy and require considerable craft skill (section 1.5.1.4; Diaper, 1989a). In the
case of a proposed future system (section 1.2), of course, the tasks can only be simulations, as
broadly define in Life, et al. (1990).

. It is therefore necessary to realize that task analysis always deals with simulations. Fidelity
(aclosely related term is validity) refers to the degree to which a simulation models the assumed
real world (Section 1.2). (From a solipsist perspective, it is the degree of agreement between
two models of the assumed real world.) Diaper (2002b) argued that fidelity varies widely
across task analyses. Fidelity can be reasonably high when an existing system or prototype
and its real end users in their natural environment are studied. Fidelity can be very low when
use scenarios (short prose descriptions of the performance of a putative future system) are
used (C_m]L 2000; chap. 5), which is not to say that these are not helpful, particularly in
the <arlier stages of the software life cycle. Between these extremes are approaches that are
intermediate in fidelity and that are usually recognized as and called simulations. Many of
tl_lese are paper based or use only a user interface without the back-end application software
f;%’ Diapers, 1990a, Adventure Game Interface Simulation Technique [AGIST]). The Wizard

Z simulation technique provides higher fidelity simulations and has been widely used, for
€xample, for studying natural language—processing computer systems that cannot yet be buiit

26 DIAPER

(e.g., Diaper, 1986; Diaper & Sheiton, 1987, 1989). In a Wizard of Oz simulation, the natural
language—processing capabilities of a future computer system are, unknown to the users tested,
simulated by a person in another location, and with sufficient care in design, such a simulaticn
can be very convincing to users. Undoubtedly there is a strong correlation between fidelity and
the point at which task analysis is used in the software life cycle, with fidelity usually lower
the earlier task analysis is used (see, e.g., Benyon & Macaulay, 2002).

1.4.2.2 Functionality

Within the computing disciplines, the term function and its derivatives, such as functional and
functionality, are polysemous (they have more than one meaning). Functionality, for instance,
refers to features available on the user interface and to capabilities of the back-end software
that support the achievement of goals. These two types of functionality share an asymmetric
relationship. The first is reaily a user interface design (UID) issue, supported by the narrow view
of HCI (section 1.4.1), and it is important because a computer system’s back-end functionality
is useless if people cannot access and use it easily. On the other hand, the back-end functionality
has to be there first. Questions about what a computer system can do as part of a work system are
crucial to HCI and are more important than interface issues (section 1.4.1). Although Sutcliffe
(1988) is right that good UID can save a functionally sound computer system, he is wrong to
suggest that better user interfaces can save poor software. In HCI, functionality is a property
of any thing in a work system, but it is usually ascribed to a work system’s agents (section
1.2.1; see also chap. 30).

Functionality is typically thought of as static, as a property of a work system’s agents and
not of its performance. Although this may be a helpful way to think about functionality, it is
obviously wrong, as there will often be functionality performance issues. For example, there
are many things that cannot be computed simply because the program would take too long
to run; encryption algorithms rely on this. At the other end of the spectrum, the functionality
of a real-time control system is severely constrained by the sequence and timing of events
as well as complexities in the application domain beyond the system’s direct control. Given
that task analysis is primarily concerned with the performance of work, one of its potential
contributions is to get analysts to realize that functionality applies to performance as well.

One specialized use of task analysis is for functional aliocation (see chaps. 6, 22, and 24),
which involves dividing the labor among the agents and determining which other things are
used and how. Automating everything possible and leaving the remainder to people was soon
recognized by ergonomists as a recipe for disaster.

As an example of how functionality can be allocated differently, consider where the inteli-
gence to perform tasks is located in work systems that include expert systems and work systems
that include hypertext ones {e.g., Beer & Diaper, 1991). Both types of computer system can be
formally described by graph theory as having an architecture of nodes connected by links that
can be traversed. In an expert system, the intelligence involved in link-traversal tasks resides
in the expert system’s inference engine, and the users are reduced to being suppliers of data to
the expert system. In a hypertext system, however, the intelligence required to traverse links is
the users’, and the computer part of the system is passive (section 1.2.1). Web search engines
provide one means of allocating some of the link-traversal task functionality to the computer
system.

Functionality is obviously such an important concept in software engineering, HCI, and
task analysis that it is odd that it has not be more fully discussed within the research literature.
Although the term functionality is not absent from this handbook’s index, for example, it is
not one of the most widely used terms herein. Chapter 30 returns to the topic of functionality
and takes a more radical stance.

1. UNDERSTANDING TASK ANALYSIS =~ 27

1.4.2.3 Implementation Independence,
Abstraction, and Goais

David Benyon and the author of this chapter have long been engaged in a friendly public discus-
sion about whether and in what way task analytic descriptions are independent of any particular
design or implementation (Benyon, 1992a, 1992b; Benyon & Macaulay, 2002; Diaper, 2002¢;
Diaper & Addison, 1992). Similarly, several chapters of this handbook disagree as to whether
task analysis should represent realistic, concrete examples of tasks (e.g., chaps. 2 and 3) or
generalized, abstract, higher level task descriptions (e.g., chaps. 4 and 7). Most task analysis
methods are capable of doing both. of course, but there appears to be little agreement as to
how close a task analysis should be to a specific implementation in a particul vironment,
and so on. Obviously, when task analysis is used prior to design, there must af'fcast at some
low level of abstraction and some independence between the task analytic representation and
the design to be subsequently predaced. When there is an existing system or prototype on
which to base a task analysis, however, the question arises as to how closely the task analysis
should be tied to use of the system (i.e., what degree of the fidelity the task simulation should
possess; section 1.4.2.1). This issue has almost certainly cansed confusion in the task analysis
literature. Part of the confusion can be resolved by considering where in the software life cycle
task analysis is to be used (sections 1.4.2 and 1.5.1) and what its purpose is (section 1.5.1.2).
When used to evaluate a current system, a task analysis might be very concrete, describing
specific things and behaviors in a detailed way. In contrast, in a creative design situation (e.g.,
the family-wear scenarios in chap. 5), the task analyses must be at a higher level of abstraction
because the design has not yet been fleshed out. Furthermore, some writers, such as Benyon and
Macaunlay (2002), have argued that further abstraction is desirable. Diaper {2002b), however,
suggested that scenarios such as those of Carroll are not proof against premature commitment
to some detailed design. In contrast, for example, although Task Analysis for Error Identifica-
tion (TAFEIL; chap. 18) is able to evaluate the design of devices prior to their implementation.
the method is highly device dependent.

The concept of goals, at least people’s goals, occurs in every chapter of this handbook,
although only this chapter (section 1.3.2) and chapter 26 state that things other than people
can have goals. Although there is a strong case for considering goals to be essential for
explaining the observable behavior of system components (sections 1.3.2, 1.4.1.1, and 1.5.1.5}),
there appears to be a second, generally implicit argument that describing goals is a means of
abstracting away from an implementation-dependent description. The argument here is that
describing what people want to do (their goals) is easily separable from what they have to do
(the tasks they must perform) to achieve these goals. Section 1.4.1.1 suggested that in HTA
(and probably many other task analysis methods) one source of confusion is that descriptions of
psychological states such as goals are not sufficiently different from descriptions of observable
behavior. A related concern is that if task analysts believe that by describing goals they are safe

making premature design commitments, they might make such commitments unwittingly.
Furthermore, if people naturally think in relatively concrete scenarios, as proposed by Diaper
(2002c), then unwitting premature design commitments are quite likely. Overall, the lower the
level of abstraction (i-e., the more detailed the task analysis), the greater the chance of such
problems occurring. The issue of the abstraction role of goals is dealt with in chapter 30.

1.5 DOING A TASK ANALYSIS

;nwm are many types of projects that involve the design, development. delivery, and main-
chance of computer systems. All these projects have a human element in that the projects
themselves are staffed by people (section 1.4.1.2). but all also have a broader HCI element. as

28 DIAPER

delivered computer systems always have an impact on some people’s lives. Furthermore, given
that task analysis, because of its concern with system performance issues, is at the core of HC1
(sections 1.1 and 1.4.1), virtually all computer-related projects will involve some form of task
analysis. This conclusion is not invalidated just because the majority of computing projects
do not explicitly recognize the premises of the argument: Any computing project involves
people inside and outside the project; such people are a main focus of interest for HCL; HCI is
concerned with performance and hence task analysis. It would undoubtedly facilitate clarity
of thought, however, if the premises and conclusion were accepted in every computing project
so that the various roles of task analysis could be identified in each project.

One reason, of many, for identifying the roles of task analysis in computing projects is
that task analysis cannot be fully automated. Analysts must make many decisions that are
subjective (neither right or wrong) but may be more or less useful. Task analysis CASE tools
(sections 1.4.1.2 and 1.4.2 and chaps. 23 and 24) can make analysts’ decision making easier
in many ways, but some “judgment calls” are unavoidable. Perhaps a long way in the future,
approaches such as Subgoal Templates (chap. 17) might lead to some artificial intelligence—
based subjective decision making, but this is far beyond current Al capabilities and may never
be deemed entirely desirable. Thus, given that computing projects will involve task analysis and
that task analysis will be iffy and introduce indeterminacy (aka noise) in project management,
then identifying the use of task analysis in projects must be a valuable aid to project managernent
and project cost estimation. All this boils down to the proposition that computing projects will,
nearly always, involve task analysis, so they might as well recognize task analysis, and if they
are going to recognize it, then they might as well call it task analysis as well.

This handbook, though by no means exhaustive, contains a considerable number of different
task analysis methods suitable for different purposes at different stages in projects. What most
distinguishes these methods are their later analysis stages (see section 1.5.2).

1.5.1 What For and How?

Whether well specified or not, all software engineering projects involve some form of develop-
ment method. Obviously, the firstquestion is, “Where could task analysis be used in the project?’
but answering this may be far from simple. Many activities in software engineering methods
are not task analytic, so perhaps the first real question for each step in a method (section 1.4.2)
is to ask, What can task analysis directly contribute? Sometimes the answer will be “nothing,”
as is usually the case when encoding a design and for some forms of code testing. This answer
is reasonable, because task analysis only has an indirect contribution to such project stages via
other stages, such as requirements and design specification and functional and user testing.

Having identified where task analysis can contribute to a project, analysts commonly leap
to the question, What task analysis method? This is an error, and it can make the results of the
task analysis unusable. The author has been as guilty of this mistake and in his case it resulted
in many years of research trying, for example, to bridge the gulf between requirements and
design (e.g., Diaper, 1990a, 2001b), because the requirements representations from the task
analyses were incompatible with design ones. The solution, once this problem is recognized,
is to work backwards at the project level and iterate around at the individual stage levels.

1.5.1.1 Working Backwards and Around

Computing projects are going to produce something because they are engineering projects,
although the something produced may not be a computer system or software but instead a
training program, manual, or managerment system. Indeed, at the start of some projects, even
the type of solution may not be known, such as when using SSM to address soft problems rather

1. UNDERSTANDING TASK ANALYSIS 290

than hard ones. Once the stages of a project have been identified so that the “Where could task
analysis be used in the project?” question can be addressed, it is best to start with the relevant
final stage of the project and work back through the stages asking this question. This strategy
is the opposite of current practice, but it is sensible because in most projects the relevant,
nearly final stage, will involve some form of testing of the performance of the project’s product.
Performance, of course, is central to task analysis, so this stage will almost certainly have a yes
answer to the question. Furthermore, in an ideal development method, everything specified in
the carlier stages of a computing project ought to be evaluated before the product is released,
which is a consequence of the principle that everything specified at one project stage should be
covered in subsequent project stages. The same principles apply to prototyping cycles as well.

Having identified the stages to which task analysts can contribate, analysts can address a
whole host of other questions at each stage. Ultimately, the project stage that will require the
most extensive, detailed, and expensive task analysis should determine how task analysis will
be used in other stages so that the costs can be amortized over these stages (section 1.4.2).
Although a common assumption is that the stage needing the most extensive task analysis is a
requirements one, it might just as plausibly be a near final performance evaluation one, and it
could be even some other stage, depending on the type of project.

Starting with the stage that will require the most extensive task analysis, the critical questions
are as follows:

1. What do you want to know from the task analysis?

2. What is the most appropriate task analysis output format?
3. What data can be collected?

4. What task analysis method?

Although it is tempting (and common practice) to ask these question as they arise in the carrying
out of the work, it is better to ask them initially in the order given above. The questions are not
independent, so it is essential to iterate around them to refine the answers to each. Just as one
should never conduct a scientific experiment without knowing how the data will be analyzed,
one should never conduct a task analysis without addressing these questions. In the worst case
COst scenario, a great quantity of task analysis data will be collected and analysed but never
used. This is costly for two related reasons. First, collecting data is itself expensive. Second,
large volumes of data not only take a long time to analyze but generally generate confusion
among the analysts. It is easy to suffer two combinatorial explosions, of data collection and
of analysis, sometimes to the extent that what is produced is less useful than what would have
been produced if a more modest but better planned approach had been adopted.

Once the above questions have been addressed for the project stage that will make the
most extensive use of task analysis, the same questions can be addressed for the other stages.
Generally, the answer to question 4 should be the same for each project stage, and likewise
for question 3, for the same data collection method should be used at each stage even if the
emphasis on the data and the degree of detail vary. Questions 1 and 2 are stage specific. The
Tationale for using a consistent task analysis approach is that it will (1) amortize the costs over
the project, (2) maintain or improve the relationship between project stage, and (3) transfer
€Xpertise across the stages.

. Planning across the whole project is the key, but such planning needs to be approached
Heratively, and the analysts need to be prepared to return to each project stage and modify
their planning. No doubt sometimes a single task analysis approach cannot be adopted across
an entire project, but use of a single approach should be a goal that is abandoned reluctantly.
_Iﬂ many real computing projects, different personnel work on different project stages, and
Insufficient communication and management across the stages is a common problem. In a

30 DIAPER

typical case, the design and implementation team hand over their prototype to the human factors
team for usability testing, but the latter use an explicit task analysis method that radically differs
from the, perhaps implicit, method used for requirements and design specification, making the
results of the usability testing partially if not totaily inapplicable to the design. One of the
strengths of Coronado and Casey’s use of task analysis (chap. 8) is that a similar task analysis
is used iteratively throughout the stages of a project.

The following four sections address in more detail the four key questions discussed above.

1.5.1.2 What Do You want to Know From the Task Analysis?

For each stage in any well planned computing project, this must be the critical question. Given
the vast range of projects and the variety of development methods, offering general advice is
nigh impossible. Worse, this is a very difficult question to answer, and the suspicion must exist
that in real projects it is often dodged on the basis that the task analysis is exploratory and
will highlight interesting issues. Unfortunately, in general task analyses won’t have this result
unless the analyst looks for “interesting issues” in the analysis. Admittedly, some issues may
arise serendipitously, as the act of performing any sort of analysis often enforces a discipline on
the analyst that leads to insights that would not otherwise occur, as also argued in chapter 4. On

" the other hand, basing an engineering approach on hoped-for serendipity is not a trustworthy
strategy. The trick is to be resigned to repeated refinement of the answers to this question as
the others are considered. In other words, start with this question but don’t expect to get it right
the first ime.

1.5.1.3 What Is the Most Appropriate Task Analysis
Output Format?

One of the strengths of structured approaches to development in software engineering is that
different stages use one or more different representations. For example, among other represen-
tations, DFDs, Entity Life Histories (ELHs), Entity Relation Diagrams (ERDs), and Process
Outlines (POs) are used in SSADM (section 1.4.2), and use cases, activity diagrams and in-
teraction diagrams, are used in UML (see chaps. 7, 11, 12, 19, 22, 23, 24, and 27). It would
therefore seem desirable for task analysis output to be in the form of one or more of such
software engineering representations or be easily related to them. This desideratum is not met
by many task analysis methods, although, in this handbook, methods developed for industrial
application (part I} and those discussed in part IV have been designed or adapted to relate
to software engineering representations. One potential disadvantage of task analysis methods
that easily relate to software engineering representations is that they often require a specific
software engineering method to be adopted or demand changes, often considerable, in the cho-
sen software engineering method. In either case, the needed revisions may be unacceptable or
costly for companies that have invested heavily in a particular software engineering approach
not explicitly supported by task analysis, although such companies might benefit in the long
term by switching to methods that do have an explicit task analytic component.

The core of the problem is the historical separation of software engineering and HCI (sec-
tion 1.4). Many task analysis methods were developed by researchers with a psychological
background, and these methods and their outputs often do not integrate well with those of
software enginecring. Furthermore, adapting task analysis methods post hoc o that their out-
put is in a software engineering representation seems to be difficult. Diaper (1997) reported
that an attempt was made to modify TAKD so that its output would be in the form of ELHs,
but this attempt was subsequently recognized as a failure (Diaper, 2001b). On the other hand,
the Pentanalysis technique has been successfully used to directly relate task analysis to DFDs
(Diaper et al., 1998).

I. UNDERSTANDING TASK ANALYSIS 31

Although asking how task analysis output contributes to a computing project is essential,
there are many cases where, even though the output does not easily fit with the software
engineering approach, undertaking one or more task analyses is still valuable. One reason is
that software engineers and systems analysts, for example, often do task analysis implicitly
and poorly (section 1.2.2.2; Diaper et al., 1998), and doing a proper task analysis explicitly is
nearly always bound to lead to an improvement in quality (at a cost, of course). Another reason
is that the act of doing a task analysis can have benefits not directly related to the collected
data. First, preparing for a task analysis and building models of the world can improve the
similar models that are essential in software engineering. Second, collecting task analysis data
forces analysts to look at their world of interest with care and often in more detail than is
common in software engineering projects. Third, the analysis of the task analytic data usually
canses further reappraisal of the data or the collection of new data. The author of this chapter
has frequently commented (e.g., Diaper, 2001b) that in more than 20 years of doing task
analyses he has never got the task analysis data representation of activity lists (section 1.5.2.2)
correct the first time, and TAKD’s method explicitly recognized this in its analysis cycles. In
summary, no one wants to expend effort, time, and money conducting task analyses that cannot
significantly contribute to a project, but the contribution of a task analysis may be considerable
even if it is indirect and the analysis cutput does not directly map to the software engineering
representations that the project uses.

1.5.1.4 What Data Can Be Collected?

One of the myths about task apalysis is that it involves the detailed observation of tasks.
Although in some cases this may be so, task analysis should be able to use and integrate many
types of data (Diaper, 1989¢c, 2001b; Johnson, Diaper & Long, 1984; chap. 3). Integrating
different types of data is facilitated by treating data from a performance-based perspective
- (section 1.3). Of course, disentangling the identification of what data can be collected from
the methods of collecting it is not easy. The effort is worthwhile, however, so that the analysts
are at least aware of what sorts of data might have been missed.

Apart from the observation of performance, task analysis data can be gathered from inter-
views and questionnaires, from all sorts of documentation, from training programs, and from
constderation of existing systems. Part of the skill of the task analyst is in recognizing how data
conflict and being able to see, for example, that the official account of how something works
(e.g., according to training systems or senior management} is at odds with actual practice.
Resolving such conflicts requires social skills and often raises ethical issues. Task analysis,
because its primary focus is performance, tends to be socialist. After all, it is the workers, those
Who actually perform the tasks of interest, who are the task experts and who will usually be
those most affected by changing the current system. Indeed, many IT system developments
have failed because the workers were not properly carried along. Bell and Hardiman (1989)
reported on one such case:

We even have one example of a highly successful knowledge-based system which is saving its
oWners many millions of dollars a year. The designers consulted some of the potential users of
the system when the System was being built, but as the designers only worked 9 am to 5 pm
they only consulted the first- and second-shift users. When the system went live, the night-shift

workers refused to have anything to do with it: the system was only being used by two-thirds of
the work-force. (p.33)

] Where thefc is conflict between the views of managers and workers, negotiating the differ-
ﬂ::e 1S essential, as a new or revised system will likely fail if it is based on an incorrect model of
Wworld (note that the official model will often be less correct). Managers do have a right and

32 DIAPER

duty to manage, of course, but some react defensively to any suggestions that their view of the
world is not the only possible one. The author’s experience working as a consultant to industry
is that the workers who perform the tasks of interest are often enthusiastic, sometimes overly
s0, about providing data for task analyses because they perceive it as a way to advantageously
influence their future work. It is also worth noting, in passing, that people are usually quite
enthusiastic about talking about their job anyway, because they spend hours a day at it and it
tends to be a taboo subject outside of the work environment and often with everyone except
their immediate coworkers.

Although there are always general issues concerning the fidelity of data (section 1.4.2.1), one
particularly important aspect of data fidelity is the data’s level of detail. Obviously, collecting
highly detailed data that are not used is hideously expensive, but having to return to data sources
to coliect more data can also be very expensive (Diaper, 1989a). There are two sets of related
problems having to do with the fidelity of data. One arises for analysts who use a deductive
(top-down) task analysis decomposition method such as HTA, and the other confronts those
who use inductive {bottom-up) methods such as were characteristic of TAKD.

First, because HTA is a deductive analysis method, even though it has its P x C stopping rule
(chap. 3), the analysts do not know the required level of data detail until they have done the HTA
analysis. Unless the analysts are highly inefficient and coliect quantities of data that remain
unanalysed, they will have to switch back and forth between data collection and analysis. The
problems of such iteration are relatively obvious when the data are derived from interviews
ot questionnaires. In such cases, if a topic is not raised, then the data required will be absent,
and the analysts will have to return to their data sources. There are expenses, however, even
with data sources that are relatively complete, such as video recordings of tasks or extensive
documentation (€.g., training manuals), as these sources have to be returned to and reanalysed.
To take the case of video recordings, where missed data are available on the recordings (and
sometimes the data are simply not captured), the recordings have to be watched again. Making
video recordings of tasks is easy, but it is time consuming and tedious to extract data from
them, say, about 10 hours of analysis for every hour of recording. Note that a video recording
is not itself an observation but merely a medium that allows analysts to observe events outside
of their real-time occurrence (Diaper, 1989a}.

A related problem that plagues inductive methods is that the level of data detail must be
selected prior to the data’s analysis. The only safe and cfficient approach here is to try to ensure
that the initial data collected are as detailed as is likely to be necessary. Although collecting
detailed data is expensive, the advantage of working from details upward is that only the
pertinent data need be analyzed. Inductive methods are therefore particularly appropriate for
analyzing data from media such as video recording.

Deductive and inductive analysis methods also face task sampling problems (chap. 30). One
substantial problem for inductive methods is that, until the analysis has been done, empirically
based principles to guide sampling are lacking. There are two types of sampling problem given
a range of tasks have been sampled, (1) tasks not sampled from within the range, and (2)
possibly relevant tasks outside the sampled range. Although neither problem is amenable to
a guaranteed solution, solving the latter is particularly difficult and must rely on the cunning
and imagination of the analyst; the former sometimes can be dealt with using some form of
statistical analysis. Chap. 8 describes commercial sitiations where analysts’ access to people
and their tasks are very limited, and chapter 2 prioritizes the desirability of sources of task
analysis data, recognizing that it is not always possible to adequately sample tasks with the
ideal people and in the ideal environments.

With deductive methods, it is theoretically possibie to establish what data to sample as the
analysis progresses to lower levels of detail. What Green (1990) calls “viscosity” however,
comes into play: as the analysis progresses, it becomes increasingly hard and expensive for the

I. UNDERSTANDING TASK ANALYSIS 33

analysts tochange earlier parts of the analysis. Viscosity is less of a problem with induction, and
is particularly well illustrated by machine induction, as it is widely recognized that most things
that can be validly induced from a data set are not what is wanted. The equivalent problem
with deduction is not widely recognized, however, perhaps because deduction engines such
as program compilers are easy to produce. Of course, they are easy to produce because we
don’t care exactly what is deduced but only that it is a valid version. That is, apart from the
issue of functionality (¢.g., that some compilers, are optimized for execution efficiency, others
for debugging), we don’t care that different compilers produce different machine codes. In
contrast, in task analysis we do care what is deduced at each Ievel of an analysis, and thus
similar sampling and analysis problems occur with both inductive and deductive approaches.

Although in a minority, there are application areas where a complete set of correctly per-
formed tasks can be analyzed, but usually not a complete set of incorrectly performed ones.
There are two such application areas: (a) where the primary tool to be used is of such limited
functionality that it can only be used in one way to perform a task (e.g., Baber and Stanton’s
digital watch, discussed in chap. 18); and (b) in some safety critical systems, defining safety
very broadly (Diaper, 1989d) where correct task performance is enforced. Note that enforce-
ment is only likely to be close to successful when functionality is relatively limited, that is, not
in complex, flexible safety critical environments such as ATC (section 1.3.2 and chap. 13}.

Carrofl (2000; see also Diaper, 2002b, 20002c) is correct however, that there are potentially
an infinite number of ways that different people may perform a range of tasks more or less suc-
cessfully and efficiently, and thus it is necessary to sample tasks for analysis. There are two basic
approaches to task sampling: using opportunity samples and doing selective sampling. Both
may be used in a project, but they do have different consequences for analysis, as noted below.

In an opportunity sample, which is most frequently used with some form of relatively
high fidelity data recording, such as video recording, the analyst, having carefully arranged
everything beforehand, of course, simply arrives and records whatever tasks are going on in the
workplace. This is a particularly good approach when the tasks or subtasks of interest are of
a relatively short duration and repetitive. AFC might be a good example, although even when
we used opportunity sampling a decade ago in the Manchester ATC tower, we did try to ensure
that, in the 1 hour of live video recording that we took, the workload did vary, as we were aware
that ATCOs and flight chiefs work slightly differently depending on their current workload.
For example, when they are busy, they are more likely to give instructions to an aircraft to fiy to
2 radio beacon rather on a specific geographical heading. The great advantage of opportunity
@pﬁng is that it allows an analysis of the frequency of tasks and task components. The
dlsac'lvamage, of course, is that some critical but rare tasks or subtasks may not be observed,
and information on these must always be sought from the task experts.

@lthough selective sampling of tasks has the disadvantage of making frequency data un-
available, it does result in a principled coverage of the range of tasks sampled. The sampling
can be any combination of frequent tasks, complex tasks, important tasks, and error-prone
tasks. Obviously the task analyst needs to understand the possible task range before collecting
the data, and the most common sowrce of such information consists of those who currently
mf;‘l the tasks or might do so in the future. Us.ually one gets this sort of information by
usmall ‘:’lms _lgeople, but care nee_ds to be taken with suf:h interviews _l)f:cal{se People do not
(cha y163531 Y the tasks ﬂ}ey do in the way the analyst is likely to. Critical incidence reports
therfl:) COnst_xtute one rich source of complex, important, and error-prone tasks, although
chap 32188) pxtenual problems with how well people recall critical events (section 1.4.1.1 and
C()ve:.' f . Another fasefu] source of task samples consists of training schemes, which generally
(becausr:ztim and. unportant tasks well but are often less helpful for identify@ng complex t.asks
not recoen; tasks tnteract) and error-prone task and error recovery tasks (which are sometimes

gmzed at all in training schemes).

34 DIAPER

The final warning on task data collection is that, whatever method is used (e.g., generating
scenarios, ethnography, interviews, and task observation), adequate collection of data depends
on the craft expertise of the task analyst. One weakness in the contents of this handbook is that,
unlike its predecessor (Diaper, 1989a), it does not contain a chapter that explicitly addresses
task data collection methods, although many chapters provide advice and examples relevant
to the analysis methods they describe. There are lots of tricks of the trade for any of these data
collection methods, but the key to success is always thorough preparation in advance of data
colection.

1.5.1.5 What Task Analysis Method?

As noted in section 1.5.1.1, the question of what task analysis method to use should be the last
one addressed and not the first, but the questions covered in the subsections above should be
iterated, as they are not independent. A task analysis method in this context is a method that
converts task-orientated data into some output representation for use in a project. A major goal
of chapter 22 is to help analysts select task analysis methods appropriate for their purposes.

A not unreasonable suspicion is that, in practice, people either choose a task analysis method
with which they are familiar or they use something that looks like HTA. As chapter 3 makes
clear, there is more to HTA than merely the hierarchical decomposition of task behaviors, and
there it is argued goals rather than behaviors are what are decomposed in HTA (see also sections
1.3.2 and 1.4.1.1). Indeed, this handbook's editors rejected more than one chapter because it
simply glossed over the relevant analysis method, often referring to it merely as a “basic task
analysis,” although this concept does still appear in a few chapters that address other aspects
of task analysis in detail (e.g., chaps. 4 and 7). Section 1.5.2 does attempt to describe what
may be thought of as a “basic™ task analysis in that it tries to describe the initial steps involved
in virtuaily any task analysis before a specific analysis method is applied to the data.

Although analysts understandably would prefer to use a task analysis method with which
they are familiar, giving in to this preference is generally a mistake and may be based on
a misunderstanding of what is complicated about task analysis. The actzal methods used to
analyze data are quite simple, and it is their baggage, much of it essential, unfortunately, that
adds the complications. For example, oite of the disadvantages of many of the task analysis
CASE tools described in part IV is that (2) they demand inputs of certain sorts that may have
to meet data completeness criteria that in a specific project situation are not relevant and (b)
they are designed to produce very specific types of output. Chapter 4 also comments on the
additional effort that a CASE tool may require (see also section 1.5.1.3).

None of the various chapters that purport to classify task analysis methods and CASE tools
(e.g., chaps. 6 and 22-25) entirely succeed at providing a mechanism for selecting a particular
method across all the situations in which task analysis might be applied in projects (which
is not to say that they lack valuable information about the methods they cover). The general
advice has to be to know the input data and the desired output and let these drive the selection
of the analysis method. On balance, it is probably the required type of output that is the most
important selection criterion. The reason for this is the lack of integration of many task analytic
and software engineering methods (section 1.5.1.3).

As with many software engineering methods, in task analysis the representations used for
analysis are usually the method’s output representations, although some methods do have a
translation stage so that they output a representation used in a software engineering method,
such as a UML representation (section 1.5.1.3 and chaps. 7, 11, 12, 19, 2224, and 27). Task
analysis methods have stages and a small number of analysis operations within each stage.
One aspect of HTA that makes it a simple task analysis method is that it has only a single
‘main analysis representation. Most task analysis methods have a relatively small number of

1. UNDERSTANDING TASK ANALYSIS 35

stages and representational forms, such as Scenario-Based Design (Carroll, 2000; chap. 5) and
ConcorTask-Trees (chap. 24). Methods such as GOMS (chap. 4) and TAFEI (chap. 18) are
partial task analysis methods in that the they deal with the later stages of what a task analyst
does. TOOD (chap. 25) is an example of a complicated task analysis method that is probably
only realistic to use, unless you are its inventors and intimates, when supported by a CASE
tool.

Methods such as HTA are recognized as being difficult in that analysts need training and
possibly years of expetience to acquire expertise (chaps. 3 and 28). Indeed, many task analysis
methods are rather messy in their description and in practice. In some cases, analtysts must work
around a method’s different stages, although methods such as TOOD (chap. 25), contro} this

 rather better than most, partly as a consequence of its being supported by CASE tools. Diaper
(2001b) discussed how building a CASE tool to support TAKD (the LUTAKD toolkit) made
clear to the method’s inventor the need to simplify the model of how analysts visit TAKD’s
stages. Feedback from task analysts trying to use TAKD indicated that stage navigation was
a difficulty and, although it is only a small program, one of the LUTAKD toolkit’s most
important facilities was a navigation system that forced analysts to make very simple decisions
concerning what analysis stage to do next.

Task analysis methods do up to three things with their input data: extract it, organize it,
and describe it. Although task analysis data may come in many formats, the most common
is a prose description (a “task transcript” or “scenario”) of one or more tasks. Other formats,
such as check sheets (Diaper, 1989a), interview notes, ethnography reports, and so forth, can
be treated like prose task descriptions. The extraction, organization, and description processes
vary widely across different methods, but however these are done, they tend to have the general
features described below.
~ Extraction typically involves two operations: Representing each task as a sequence of short
sentences, known as an activity list, a task protocol, or an interaction script {Carroll, 2000;

- Diaper, 2002b), and classifying things. As noted in section 1.2.1 and, for example, by Diaper
(1989¢), the things tend to be organized into objects and actions, and often the objects are
separated into agents and things used by agents. Classifying things in other ways has developed
over the last dozen years or 50, as triggers, for example (chaps. 14 and 19).

Organization also involves two typical operations: integrating different task descriptions if
more than one description of a task is used and categorizing the information extracted. The most
common organization is a hierarchical one, although section 1.2.2.1 argues for heterarchical
models, and some methods, such as simplified set theory for systems modelling (SST4SM)
(Diaper, 2000a, 2001a), can use a flat, nonleveled model to produce temporary alternative
classification schemes. The most common consequence of the categorization process is the
division of task descriptions into subtasks.

Naturaily, almost all task analysis methods claim to be able to combine descriptions of
a task performed by different people in different ways. Quite a few methods are able to
combine different tasks into a single task representation. On the other hand, there are some
outstanding problems with combining even the same task performed in different ways. This
is most obvious in task analyses that use high-fidelity data capture methods, usually video
recording, to document a specific realistic task. Given more than one recording of the same
task, the different ways it is carried out ideally need combining in a single task representation.
Readers of this handbook and the other task analysis literature should be alert to the various
ways that most task analysis methods fudge this issue. Diaper (2002b) described Carroll’s
(2000) method of noting alternatives at the bottom of the activity list as quite crude, but at
least the issue is recognized by Carroll; it is not in some of this handbook’s chapters. The most
common fudge is to have a single ideal task description that limits the description of use to an
Optimized set of subtasks and operations. Although many methods use this approach, TAFEI

36 DIAPER

(chap. 18) provides a particularly clear example because it explicitly exploits the approach
to look for deviations from the ideal task model (errors). Nor is it clear that abstracted task
modeis (section 1.4.2.3) help solve this problem. In many cases, to represent different tasks,
analysts must employ craft skill, and chapter 30 argues that this is one problem area that ought
to be recognized and dealt with,

The task analysis description operations are what primarily distinguish different task analy-
sis methods. The variety of these operations is vast, and a great deal of this handbook is devoted
to describing the operations used by the task analysis methods addressed. The description op-
erations aid in further extraction (Carroll, 2000; chap. 5) and organization or add properties to
objects and actions (e.g., those having to do with sequence or preconditions). The next section
describes the typical first stages of task analysis before the analysts use whatever description
processes their chosen method specifies.

1.5.2 The First Stages of Task Analysis

Like so much in life, preparation is the key to doing a good task analysis. The analysts should
start by addressing the following five questions:

1. Which project stages will use task apalysis?

2. 'What do you want to know from the task analysis?

3. What is the most appropriate task analysis output format?
4. What data can be collected?

5. What task analysis method?

To obtain reasonable answers to these questions, the analysts will have to have done most,
if not all, of the intellectual preparation for the task analysis. Questions 1, 2, and 3 concern the
role of the task analysis in the project. Answering questions 4 and 5 will require some basic
background understanding of the tasks to be analyzed. What remains to be sorted out is the
logistics, who will do what tasks when. The logistics may be trivial, as in the case of a small,
well-integrated design team generating scenarios, but they can be very complicated, as when
video recordings are to be made in the workplace. With experience, making video recordings
of a wide variety of tasks in different environments is quite easy, but there is a lot of craft
trickery in dealing with ambient light and sound, camera angles, and so on, beyond knowing
how to operate the camera. Indeed, there is a lot of craft trickery in all data collection methods,
which is one more argument for the suggestion that task analysis should be done by those with
expertise in it (see also section 1.6).

The following subsections attempt to describe the first steps in nearly all task analyses..
Different task analysis methods use different terminology, of course, and some of what is
described below is skipped or is imaplicit in some methods. The description is independent of
the data collection method, but the default method used is making video recordings of a range of
tasks by a number of different peop!le in their real work environment. This is a fairly high-fidelity
data collection method (section 1.4.2.1), but the same issues arise with other methods such as
interviews and even with low-fidelity task simulations such as scenarios (Diaper, 2002b).

1.5.2.1 Data Collection and Representation

By the time analysts are ready to start collecting data for a task analysis, they will have a
systemic model of the work system and application domain (sections 1.2 and 1.3). It may
only be in their minds, but they must have identified the things that will be recorded. This is
obvious for video data but is even true, at the other end of the fidelity continuum, for scenario

1. UNDERSTANDING TASK ANALYSIS 37

generation, for it is necessary to know, in general terms, what the scenarios are to be about.
Note that the act of writing a scenario is equivalent to making a video recording of a task. The
systemic task analysis (STA) approach introduced in section 1.5.3 argues that if the analysts
are required to have a systemic model, they should start by making it explicit.

Task selection involves identifying the tasks that will be used to supply data (section 1.5.1.4).
One needs to identify the tasks, their number, who will do them, and whether similar tasks
are to be done more than once and by different people, for cxample. In general, the higher
the fidelity of the data collection method, the more expensive, in ali sorts of ways, the data
collection exercise. It is obviously usually much easier to generate some more scenarios than:
to have to revisit a workplace to make more video recordings. One important decision to make
concerns the level of detail of the data that will be collected, as too high a level will require
further data collection and too low a level will be more expensive and may cause the analysts
confusion {section 1.5.1.1).

The result of a task data collection exercise will be a set of records that describe how a
set of tasks were performed. The records might be video- or audiotapes, written scenarios,
ethnography reposts, interview notes, or summaries of document sources such as training
manuals. Interestingly, high- and low-fidelity data collection methods, such as video recording
and scenario generation, respectively, result in records that more closely follow task structure
than intermediate methods such as interviewing, even when the interviews are task performance
onientated (e.g., Diaper, 1990b: chap. 16; but sce sections 1.4.1.1 and 1.5.1.4).

A scenario as a story about use (Carroll, 2000; chap. 5) is a task transcript, that is, a prose
description of task performance. One of the minor myths about task analysis that seems to have
survived for decades is that if a transcript is lacking, creating one is the next step in the task
analysis. One justification, more common in industry than academe, for producing a task tran-
SCHpL, say from a video recording, is that this is an administrative task that can be done by labor
cheaper than a task analyst. An argument against this arrangement is that doing transcription
is a good way for analysts to understand their data and their analysis. For video transcription,
the rough estimate, on which there seems to be a consensus, is that transcription takes about
10 times longer than the recording. A better alternative when a transcript is not available is
1o take the records, whether interview notes, video or audio recordings, or whatever and im-
mediately convert them into the activity list format that is central to virtually all task analysis
methods. If one does have a task transcript, then producing an activity list is the next step.

1.5.2.2 Activity Lists and Things

An activity list, sometimes called a “task protocol” or an “interaction script” (Carroll, 2000,
chap. 10), is a prose text description of a task that has the format of a list. Each item on the
list represents a task step. The heuristic that this author has promulgated for years (Diaper,
1989¢, 2001b, 2002b) is that each line of an activity list should have a single main agent that
Performs a main action that affects other things (i.e., objects and agents). Depending on the
level of detail, there may be short sequences of subsidiary actions specified, such as those that
never vary (e.g., pressing the [Return] key after a command line input), and the main action
will often entail quite lengthy strings of task components (e.g., when entering text using a word
Processor). People do carry out tasks or subtasks in parallel (e.g.. simultaneously browsing
fhe:r PC’s diary while arranging a meeting with someone on the phone), and the advice here
1% [o treat the two related tasks separately in the activity list and represent each of the related
task components on adjacent activity list lines. Switching between two or more unrelated tasks
::an be trtzated in the same way. or separate activity lists can be constructed, if the interleaved
asks don't gffect €ach other. The end result of the activity list construction process should be
an ordered list of the steps performed to carry out each task recorded.

38 DIAPER

It is important to note that, to follow the above heuristic, it is necessary to have identified
the things that will be represented in the activity list and to at least have classified them as
actions, agents, and other objects (see sections 1.2.1 and 1.5.2.1). One might chose to extend
this classification while constructing the activity list (e.g., identifying triggers, as proposed in
chap. 19) or this might be done at a later analysis stage.

Generally the analyst will want to give each line on the activity list a unique identifier, and
the obvious thing to do, it seems to most people, is to number the activity list lines. If you do
this starting 1, 2, 3, 4, ..., then, in practice, you are almost bound to run into difficulties. As
I've mentioned, after 20 years of doing task analysis I've still never got an activity list right
first time and always have to return to it once I've done some further analysis. If I numbered the
lines, I would need to renumber them each time I made a change. Even if software is being used
that propagates changes to activity list line numbers throughout all the analyses, such changes
still give analysts difficulty. After all, the point of identifying each activity list line is so that
it can be easily referred to and found. When I number activity list lines these days, I prefer to
use intervals of 100 or 1,000 so that I can add lines subsequently without renumbering.

With observational data collection methods, it is possible to collect time data. Most analog
and digital video cameras allow the recording to be time stamped, usually o the nearest second. -
Recording task performance on paper and using a stopwatch is quite a difficult task for the
analyst, and the timing is probably only reliable to within 3-5 seconds. Whenever possible 1
always try to use video rather than pen and paper. If collecting the time data is free, as with
video recording, then it is still an issue whether to put it on the activity list. The temptation is
to do it because the data are available, but my experience is that time stamping an activity list
is a time-consuming business and should be done only if it is essential to what will be analyzed
subsequently. It usually has to be done when efficiency issues are the primary concern of the
task analysis. One advantage of using GOMS after producing an activity list is that GOMS
provides estimates of the time it takes to perform task components (chap. 4), so time doesn’t
have to be recorded on the activity list. Nantheless, it is a good idea to check the GOMS
estimates for a sample of tasks or subtasks against the actual durations recorded.

Many HCI tasks involve a dialogue between a small number of agents. Where there are
two, three, or four agents (four is probably the upper limit), a good format for an activity list
is to represent each agent in a separate column. This is easy with two agents, typically a user
acting as the agent of the work system and a computer acting as the application domain’s agent
(sections 1.3.2 and 1.3.3). One advantage of this format is that the 3Ps (perceive, process, and
perform) can be applied to each agent’s column, similar to the cognitive mode! advocated by
TOOD (chap. 25; see also chap. 28). Another advantage is that the format allows representaticn
of behavior by one agent and different processing and responses by other agents. For example,
in ATC, the ATCO may type an input to a flight strip control system while being observed
by the flight chief sitting next to the ATCO; the computer system and the flight chief will
obviously treat the ATCO’s behavior differently.

An activity list describes a single instance of one or more tasks by listing what occurs in
sequence, if not in time, although it may be more or less concrete (i.c., more or less detailed;
section 1.4.2.3). The problems that remain concern how to deal with parallel tasks, how to deal
with interrupted and interleaved tasks, and how to combine activity lists to produce generic
task descriptions. These problems are properly part of the task analysis processes discussed in
the next subsection, and some of them are illustrated in section 1.5.3.4 (see also chap. 30).

1.5.2.3 Analysis in Task Analysis

To start with a true but apocryphal story, something was obviously learned since the first British
HCI conference in 1985, because the next year, at HCI*86, there was a stock answer to most
questions from the andience: “Oh, we did a task analysis.” In most cases, this meant that they

1. UNDERSTANDING TASK ANALYSIS 39

had stood over the user’s shoulder and watched for a few minutes. Although something may
be better than nothing, they did have go and find a user, after all, this really is not good
enough, and it gives task analysis a bad name. One option, perthaps understandably not often
mentioned by those who produce articles and books on task analysis methods, including many
of the coauthors of this handbook, is to settle for producing activity list descriptions and to
decide that no further analysis needs to be done. Producing activity list descriptions of tasks
really does force an understanding of the individual tasks (see also chap. 4). The question is,
how much more do the subsequent analyses add? Sometimes a lot, of course, but there are cases,
for example, in requirements analysis, where what is learned from activity list construction
is the most useful contribution of the task analysis. In addition, sometimes when evaluating a
prototype, for example, it is easy to spot task performance problems directly from individual
activity lists.

See section 1.5.3.4 for a discussion of the general sorts of operations involved in different
task analysis methods. As noted in section 1.5.2.2 and chapter 30, there are issues to be resolved
concerning how to integrate task descriptions and deal with parallel, interleaved, and alternative
versions of tasks.

1.5.3 Systemic Task Analysis

The discussion in section 1.5.2 is intended to apply to task analysis in general, even though
the advice about activity lists is quite specific because some such representation is common
in most task analysis methods, although formats vary. In contrast, this section illastrates with
a microscopically small example how the first stages of a task analysis can be carried out.
This requires a particular notation and method, and what will be introduced is a new task
analysis method, currently dubbed systemic task analysis (STA). This method takes the ideas
about systems and work performance introduced in sections 1.2 and 1.3 as its basis. A full
description of the STA method is not provided here, but just the representations that STA uses
at each of its initial main stages.

The main stages in STA, which all iterate in something like a classic waterfali-type model
(section 1.4.2), are as follows:

i. Static systemic modeling.

2. Data collection.

3. Activity list construction.

4. Dynamic systemic modeling.

5. Simplified set theory for systems modeling (SST45M).

1.5.3.1 Siatic systemic Modeling and the Example Scenario

Section 1.5.2.1 argues that at the start of a task analysis exercise the analyst must have
some form of systems model, however implicit, so STA makes a virtue of this by having
its first step make such a model] explicit. Using ATC as an example {see section 1.3.2), a
systems model such as shown in Fig. 1.4 is the sort of thing that can be quickly obtained
by looking around a control tower and interviewing a few people after perhaps having done
some background reading. Such a system model identifies the things in the system {section
1.2.1), models both their conceptual and communicative relationships (sections 1.2.2.1 and
1.2.2.2, respectively), and identifies various goals that start to define the work to be achieved
{section 1.32). It is a static model. however, in that it does not represent either time or se-
Quence. For this reason and because there is no explicit representation of performance, it is

not a task analytic model, although the analysts will probably run the model in their minds
(section 1.2.2.2).

40 DIAPER

For the example, let us further assume as was the case with our Manchester Airport study
(Section 1.3.2), that the primary interest is in a requirements capture exercise which is starting
by modelling how the current paper flight strip system performs. The work, in the early 1990s,
was carried out with about a ten year planning horizon for replacing the paper based system
with an electronic flight strip system.

1.5.3.2 Data Collection

Having gained access to the Manchester ATC tower, not an easy thing, as there are major
safety considerations, we set up a video camera to record the ATCO sitting in front of the
flight strip system. Despite the cacophony of a real ATC tower, what the ATCO and the Hight
chief, who sits next to the ATCO, say is audible on the video recording (getting good sound
required some careful, pre-researched placement of the camera microphone). We also had an
extension feed 1o the video camera to record both sides of the radio telephone communication
between the ATCO and the aircraft (also researched in advance). The video camera is left
to run for an hour, and as expected the workload increases during the session. The ATCO is
interviewed immediately after the session using a post -task walk-through. In this walk-through,
the ATCO stops and starts the recording of the session and explains what is going on, either
spontaneously or prompted by us. We record the walk-through by pointing the camera at the
TV screen showing the original task video while the ATCO makes comments. The time stamp
on the original video is easily readable on the walk-through recording, which is also time
stamped. The walk-through of the 1-hour Manchester Airport task video takes about 3 hours,
a typical amount of time.

1.5.3.3 Activity List Construction and Analysis

Whatever the format of the task data collected, an activity list is a fundamental (perhaps
the fundamental) representation of a task in task analysis. Table 1.1 shows a fragment of an
activity list that might have been created from the Manchester Airport videos. Producing it
would involve first watching the task video and identifying the actions and other things with
their times, then going through the walk-through video. Table 1.1 represents what an activity
list might look like after several cycles of development during which the analyst has refined the
descriptions of the task steps and added comments. The irregular activity list line numbering
reflects this cyclical development (section 1.5.2.2). The activity list could be further refined,
as discussed below.

The activity list Table 1.1 follows the systems model shown in Fig. 1.4 by separating the
work system, whose primary agent is the ATCO, from the application domain, which is the
flight strip rack. In a paper-based flight strip system, the flight strip rack is an object and not an
agent, as the rack has no processes (sections 1.2.1 and 1.4.2.1 and chap. 26). The focus of the
task analysis in Table 1.1 is on what the ATCO does, and the application domain descriptions are
represented at a higher level and less completely than the descriptions of the ATCO’s behavior.

At the first activity list line, 4800, the ATCQ is in radio communication when the assistant
places a new flight strip in the rack; the ATCO finishes this task at line 5700. At line 5800,
the ATCO starts to scan the flight strip rack. The subject of the comment attached to this line
(i.e., the trigger for this task) is the sort of thing an expert task analyst would have asked about
during the walk-through. In a further refined activity list, it might be represented by its own
activity list line specifying the ATCO’s cognitive operations. Line 6100, for example, does
indicate the cognitive rule the ATCO claims to use. Having decided to deal with a particular
aircraft at line 6100, the ATCO then drops into a subtask concerning when the aircraft’s flight
strip arrived on the flight strip rack. The ATCO queries the flight chief about the flight strip
before returning to the main current task of dealing with the selected aircraft at line 6700.

TABLE 1.1

Fragment of an ATC Activity List
D Time Work System Application Domain Comments
4800 1424 Assistant places new flight New flight strip ... ATCO on radio to aircraft AC
strip for aircraft AC 234, AC234, cocked. on 207. Note input from the
cocked. on rack. rack. assistant systen to the work
system.
5500 15:08 ATCO ends radio dialogue to Radio nirned off.
aircraft AC 207,
5600 15:10 ATCO updates flight strip AC
207 with pen.
5700 15:12 Flight strip AC207
updated.
5800 15:15 ATCO scans rack of Live flight Cognitive trigger: “Do at end of
strips. each task and do often.”
5900 15:22 ATCO scans rack for new, Cognitive trigger: “Do after live
cocked flight strips. flight strips and if no
immediate tasks.”
6000 15:24 ATCO reads flight strip AC
234,
6100 ATCO decides flight strip AC Alrcraft AC 234 is on a diverted
234 necds deaiing with as its flight.
arrival time is within §
mminutes.
6200 15:28 ATCO takes flight strip AC Flight strip AC 234 Physical ATCO behavior.
234 off rack and holds it in removed from rack.
hands. _
6210 15:28 ATCO doesn’t know exactly ATCO says this “only a mild
when fight strip AC 234 concern” as knew he'd looked
arrived on rack. at the whole rack “3 or 4
minutes age"” (Actual
. = 3m:15s5 ago).
6250 ...15:28 Flight Chiefis jooking atradar. Radar display is Flight Chief's current activity.
pormal.
6270 1528 ATCO is logking at whether This is a complex work- and
the Flight Chief is “free.” social-based decision but done
frequently.
6300 15:30 ATCO shows flight strip AC The flight strip is moved ta be
234 o Flight Chief. within easy reading distance
for the Flight Chief while still
being held by the ATCO.
6301 15:30 ATCO says to Flight Chief,
“When did this arrive?"
6450 15:33 Flight Chief reads flight strip
AC 234,
6550 15:3¢ Flight Chief attempts to recall This is not an official Flight Chief
when last saw Assistant near responsibiliry.
rack.
6650 |S:a0 Flight Chief says to ATCO, This triggers the ATCO 1o rerurn
“About 5 minutes ago.” to dealing with the AC 234
ight strip.
6700 15:43 ATCO focuses attention on rack. e
e

e
—

42 DIAPER

The activity list in Table 1.1 could be more detailed or less detailed. For example, some
activity list lines could be combined, such as 5500 and 5560; 5800—6000 and 6700; and 6200—
6301 and 6450-6650. The level of detail chosen for Table 1.1 was primarily driven by the
author’s perception of its understandability by this chapter’s readers, but it is the sort of level
of description he has often found useful when analyzing important tasks. ATC is highly safety
critical, so some depth of analysis is usually warranted.

Section 1.5.2.3 suggests that producing an activity list can sometimes be sufficient for some
projects’ purposes. To produce one such as in Table 1.1 does require the analyst to understand,
quite thoroughly, each task analyzed. Given that the main project that the Manchester Airport
study was to contribute to involved designing computer replacement systems for the paper-
based flight strip rack, there are two major design issues that arise just from the activity list
fragment in Tabie 1.1: (a) new flight strip arrival time information, and (b) ATCQ and flight chief
cooperative work and communication and their estimates of each other’s current workload.

At line 6100, the ATCO notices that an aircraft is due to become “live” in a few minutes and
realizes that he doesn’t know when the flight strip appeared in the rack. With a paper system,
an obvious solution to this problem would for the assistant to write on each flight strip the time
itis placed on the rack. The ATCO expresses only “mild concern™ at this problem, although we
might consider looking in more detail at the difference between the ATCO’s estimates of when
the rack was last scanned and the actual time between scans (e.g., is the difference between
“3 or 4 minutes™ and 5:15 minutes significant?). With an electronic flight strip system, there are
arange of design issues. Apart from merely recording the time a flight strip arrives on the rack,
each flight strip could have one or more clocks or countdowns associated with it. For example,
each flight strip could display when it was last modified, how long until the next action is
due, and when it was last attended to. The latter could be achieved by selecting individual
strips, whole blocks of them, or all strips after scanning them (see chap. 13). Any such design
is likely to have consequences for cognitive actions like the triggers idéntified in lines 5800
and 5900. One measure of subsequent design success might be the reduced probability of the
ATCO and flight chief needing to discuss such problems, particularly when they are both busy.

Sitting next to each other in the current ATC work system, the ATCO and the flight chief
talk a lot, and when both are not busy, not all of the talk is narrowly task focused. Some is even
social persifiage, which may be quite important, as the two have to work in a highly coordinated
fashion, trusting each other. Note that these are important psychological things about these
people (Section 1.2.1). Even assuming that a decision has been made to keep the ATCO and the
flight chief next to each other in front of the electronic system, lines 6250 to 6650 still highlight
a number of design issues. They are the sort of issues that task analysis tends to be better at
identifying than other HCI and software engineering methods. First, the ATCO has to be able
to estimate what the flight chief is doing, so he needs some way to get an overview quickly,
and presumably the same is true for the flight chief. Second, the ATCO wants the flight chief
to read a particuiar strip but does not want to give the flight chief control of it (information
gamered from the post -task walk-through). These two issues create computer-generated dis-
play requirements concerning the general observability and specific readability of flight strips
by someone not directly in front of the display. Interestingly, even after extensive task analyses,
the actual new ATC system, described in chapter 13, had initial problems with display read-
ability. A really creative task analyst might also foresee some design issues concerning less
variety of style in both the display (e.g., the loss of variation in hand written things an flight
strips when they are computer generated) and the ATCO and flight chief’s behaviors, which
will make estimating what the other person is doing harder in the new electronic system.

The above is a lot of design- and evaluation-relevant stuff to get from a few lines of a
single task’s activity list. Analyze more lines and more tasks and a great deal more design
requirements can be taken directly from the task activity lists. Why do more analysis?

1. UNDERSTANDING TASK ANALYSIS 43

1.5.3.4 Abstract and Dynamic Systemic Modeling

Why do more task analysis after constructing an activity list? The most obvious answer has to
do with the volume of information. In many, probably most, task analyses, the analyst winds
up with many tens and often hundreds of pages of activity lists. What task analysis methods
solve, more or less successfully, is the problem of reducing this volume by combining tasks,
representing them at higher levels of description so as to allow different task instances to be
combined, and representing alternative and optional tasks (e.g., an error-recovery subtask).
Most task analysis methods do other things as well, and these things partially distinguish them
from each other.

HTA is one of the hardest methods to do well. It is a popular method in industry but is not
always done well (Ainsworth & Marshall, 1998) because it is poorly specified and relies on
considerable craft expertise (chaps. 3 and 28). Although they look more complicated becanse
they are better specified, particularly the task analysis methods supported by CASE tools, many
methods are aciually easier to carry out than HTA because the analyst is guided through the
process (section 1.5.1.5). Notwithstanding my personal preference for heterarchical modeis
(section 1.2.2.1), Fig. 1.5 shows where one might start producing a hierarchical model from
the activity list fragment in Table 1.1. An inductive, bottom-up approach (section 1.5.1.4)
has been used, and at this stage the specific activity list lines have been left in as hierarchy
terminators below some initial task classifications. Whether the resuiting hierarchy is actually
an HTA diagram as described by Annett (chap. 3) depends on how these task classifications are
defined; in an HTA “Deal with new flight strips,” for example, would be an ATCO goal and not
a description of behavior. As more activity list lines become incorporated in the hierarchical
analysis, the model wilt change. For example, not all the subtasks that follow the “Identify

N_B. Not inciudsd:
Rule: Scam rack watil find nexe kesk or other inlarrapt 6256 - Flight Chief I
islndn'uluadum_:
Scan Rack | Deal with mew flight strips |
IM;mm,mm;mm I I Rude: Do 6000 shew 6100 |
5080 . ATCO scams rack $500 - ATCO scans tack for 6000 - ATCO 6100 - ATOO decides
of live flight strips new, cocked, flight strips reads flight strip flight strip AC 234 needs
AC234 dealing with
Rule: Decide Normal or Abesormal
| Nermat] :I___l““"
€708 - ATCO Rule: Do ID Abnorme, | shen 6270 (Dptional), .
focuses gy s e | ATCO & Frigat Chief Lisison |
Nentian oo Hicvor. {f = 'Ves
ek
Rale; Do “neroction”, ther: "FC decd wish®
Ldentify Abmormatity | ATCO & Flight Chief 1mteraction | | Flight Chief deal with new fight strip |
Ruje: In paraliel, Rl : Do 65430 and 6550, Do 6650 if poszibie
6270 6300 - 6301 - 6450 - 6558 - Flight 6650 -
ATCO's ATCO ATCO says Flight Chief Flight
fooking at shows to Flight Chief attsmpts o Chief says
whether the flight strip Chief reads vecall when to ATCO
Flight AC234 10 “When did flight strip last saw “shout 5
Chiefis Flight this AC 234 Assistant near minuies
“frec” Chief armive?” rack ago”

Fl . -
G. 1.5. The stan of an exarmple hierarchical model based on the activity list in table 1.1.

44 DIAPER

abnormality” subtask will involve “ATCO & flight chief liaison,” so incorporating more activity
list lines will reguire some structurat alteration to the diagram. One of the things that does drive
this sort of analysis is that combining activity list lines generally forces abstraction (section
1.4.2.3). Obviously, if the comment for line 8000 is “ATCO reads flight strip AC321,” which
is very close to the comment for line 6000, then these two lines can simply be combined by
deleting or making general the aircraft ID. In contrast, line 6100 might have a quite complex
extension, with more activity kst line analysis. For example, there may be alternative strategies
to what “needs dealing with” means, using a variant like “needs dealing with soon” which might
cause the ATCO 1o continue scanning the rack but to return to a strip as soon as possible after
completing the scan.

One major difficulty that HTA shares with other task analysis methods and systemic models
of all kinds is that, although a model can be invalid (i.e., not match what actually happens;
sections 1.4.2.1, 1.5, and 1.5.1.4), in most situations there can be a number of different valid
models. Making decisions on how to build a model is one of the core craft skills of virtually
all analysts, whether in task analysis, IT systems analysis, software engineering, and so on.

STA attempts to deal with the above problem by providing a great deal of flexibility in the
structure of its systems model. Starting with a systems model such as in Fig. 1.4, activity list
lines can be added to the diagram by directly locating the lines (numbers) on things, including
the communcative relationships. This is how the Pentanalysis Technique (Diaper et al., 1998)
works, but there the systems model is a hierarchical DFD-based one rather than a heterarchical
one. The systems model will frequently have to be refined, often by dividing things into smaller
things. The end result of this analysis process in STA is a systems model with all the routes
the different tasks take through it. The model thus combines the tasks and represents all the
alternatives discovered. The remaining problem for STA, and a fundamental one for all HCI
task apalysis methods, is how to use the results of the analysis to support the project. Note that
a good analyst would already have decided this (section 1.5.1.2).

STA uses a formal modeling system based on set theory called Simplified Set Theory for
Systems Modeling (SST4SM). SST4SM is simplified in the sense that it is designed to be
understandable, and even usable, by the “mathematically challenged” (Diaper, 2000z, 2001a).
SST4SM'’s equations cause activity list lines to be rewritten in terms of the sets involved in
the systems model and can have properties of each set or subset represented as set elements.
With sensible set names, SST4SM’s equations can be rewritten as English-like sentences, so the
method provides one mechanism of automatic abstraction by producing prose activity List lines
in a common format. This was a major, explicit design consideration for TAKD (e.g., Diaper
2001b; Diaper & Johnson, 1989). As briefly illustrated in Diaper (2000a), SST4SM has methods
for understanding and reasoning with its equations that do rot involve algebraic manipulation.
The use of SST4SM is peculiar to STA, but the first stages of STA’s approach would seem to
cover what needs doing in virtually any task analysis exercise of quality. When a task analysis
has not been performed well, a likely cause is that the analyst has not understoed (and built)
an adequate systems model, systematically collected the data, or adequately represented the
data in some activity list form.

1.6 CONCLUSION

Is task analysis easy to understand? Based on the chapter’s word count, you might be inclined
to say no. On the other hand, although this chapter took more than half a year to write and
contains a distillation of the author’s 20 years of experience with task analysis, the concepts,
each taken in turn, are not that complicated. Also note that the whole first half of the chapter
is devoted to exposing, in a rational order, the many issues that underlie task analysis and

1. UNDERSTANDING TASK ANALYSIS 45

which most writings on the subject address only partially if at all. The second half then tries to
illustrate the practical aspects of the first half’s theorizing. Section 1.1 describes the chapter’s
contents and so a summary will not be repeated here.

In a number of places in this chapter and in other chapters in this handbook, it is suggested
that task analysis should be carried out by experts. There are two general arguments supporting
this suggestion: (a) Task analysis is so complicated that only experts can understand it, and (b)
like many things in life, doing task analysis well requires all sorts of craft skills that people
ma]ly only learn through practical experience. Although agreeing with (b), this chapter attempts
to refute (a). Although design is clearly a craft, chapter 11 makes explicit the value of using

task representations that nonexperts can understand, and chapter 10 describes a commercial
software development environment where task analysis is to be carried out by people who are
not HCI experts.
Most of this handbook’s chapters are cross-referenced in this chapter. Yet, because the field
. of task analysis is divers and fragmentary, as stated in the preface, the editors have refrained
from standardizing the models, concepts, and terminology that occur in the other chapters.
Readers may find that attempting to relate the contents of the other chapters to the ideas in
this one is an informative exercise and will help elucidate what each of the other chapters -
actually covers. Whether editorial standardization might be enforceable in future editions of
this handbook remains to be seen. As a prerequisite, people must agree on solutions to the
problems of task analysis discussed in the final chapter of this handbook.
Finally, for those readers who are still struggling to understand the underlying concepts of
task analysis, the next chapter provides a practical task analysis tutorial aimed to get students
going at doing task analysis.

"REFERENCES

Ainsworth, L., & Marshall, E. (1998). Issues of quality and practicality in task analysis: Preliminary results from two
surveys. Ergonomics, 41, 1607-1617.

Alavi, M. (1993). An Assessment of electronic meeting systems in a corporate seting. In G. De Michelis,
C. Simone, & K. Schmidt (Eds.), Proceedings of the Third European Conference on Computer Supported
Cooperative Work.

Anderson, . R., & Lebiere, C. (1998). The atomic components of thought. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, R., Carmoll, J., Grudin, J., McGrew, J., & Scapin, D. (1990). Task analysis: The oft missed step in
the development of computer-human interfaces: Its desirable nature, value and role. In D. Diaper, D. Gilmore,
G. Cockton, & B. Shackel (Eds.), Human-computer Interaction: Interact, '90 (pp. 1051-1034). Amsterdam:
North-Holland.

Anmett, J., & Stanton, N, A. (Eds.) (£998). Editorial [Special issue on task analysis]. Ergonomics, 41, 1529-1536.

Ashworth, C., & Goodland, M. {1990}, SSADM: A practical approach. New York: MeGraw-Hill.

Atkinson, M. (1988). Cagnitive science and philosophy of mind. In M. McTear (Ed.), Understanding cognitive science
(pp. 46-68). Chichester, England: Elis Horwood.

Barlow, J., Rada, R., & Diaper, D. (1989). Interacting WITH computers. Interacting With Computers, I, 39-42.

Beer, M., & Diaper, D. (1991). Reading and writing documenis using Headed Record Expertext. In M. Sharples (Ed.).
Proceedings of the Fourth Annual Conference on Computers and the Writing Pmces's (pp. 198-207). University of
Sussex, Brigaton, UK. Reprinted in AISB Newsletter, (1991), 77, 22-28.

Bell, J., & Hardiman, R. J. {1989). The third role: The naturalistic knowledge engineer. In D. Diaper (E4.), Knowledge
elicitation: Principles, technigues and applications. (pp. 47-86). Chichester, England: Ellis Horwood.

Beach-Capon, T., & McEnry, A. (1989a). People interact through computers not with them. Interacring With Com-
puters, I, 31-38.

Be;lzcg_-(zfzagon. T.. & McEnry, A. (1989b). Modelling devices and modelling speakers. Interacting With Computers, 1,

Benyon, D. (1992a). The role of task analysis in systems design. Interacting With Computers, 4. 102-123.

Benyon, D. (1992b). Task analysis and system design: The discipline of data. Interacring With Computers, 4,
246-259.

46 DIAPER

Benyon, D., & Macaulay, C. (2002). Scenarios and the HCI-SE design problemn. Interacting With Computers, 14,
397-405.

Bowker, G. C., & Star, S. L. (2000). Sorting things out: Classificarion and its consequences. Cambridge, MA: MIT
Press.

Cameron, I. R. (1983). JSP & JSD: The Jackson approach to software development. IEEE Computer Society Press,
Los Angeles.

Carrofl, J. M. (1991). History and hysteresis in theories and frameworks for HCL In D. Diaper & N. Hammond, (Eds.).
People and computers VI (pp. 47-56). Cambridge: Cambridge University Press.

Carroll, J. M. (2000). Making use: Scenario-based design for human-compuier interactions. Cambridge, MA: MIT
Press.

Checkland, P. (1981). Systems thinking, systems practice. New York: Wiley.

Clark, R. B., & Panchen, A. L. (1971). Synopsis of animal classification. London: Chapman & Hall.

De Marco, T. (1979). Structured analysis and system specification. Englewood Clifts NJ: Prentice-Hall.

Diaper, D. (1982). Cenrral backward masking and the two task paradigm. Unpublished Ph.D. dissertation, University
of Cambridge.

Diaper, D. (1984). An approach to IKBS development based on a review of “Conceptual Structures: Information
Processing in Mind and Machine” by J. F. Sowa. behavior and Information Technology, 3, 249-255.

Diaper, D. (1986). Identifying the knowledge requirements of an expert system’s nasural language processing interface.
In M. D. Harrisor & A. F. Mook (Eds.), People and computers: Designing for usability (pp. 263~280}. Cambridge:
Cambridge University Press.

Diaper, D. (1989a). Task observation for Human-Computer Interaction. In D. Diaper (Ed.), Tusk analysis for human-
computer interaction (pp. 210-237). Chichester, England: Ellis Horwood.

Diaper, D. (1989b). Designing expert systems: From Dan to Beersheba. In D. Diaper (Ed.), Knowledge elicitation:
Principles, techniques and applications (pp. 15-46). Chichester, England: Ellis Horwood.

Diaper, D. (1989c). Task Analysis for Knowledge Descriptions (TAKD): The method and an example. In D. Diaper
(Ed.}, Task analysis for human-computer interaction (pp. 108—159). Chichester, England: Ellis Horwood.

Diaper, D. (1989d). The discipline of human-computer interaction. Inieracting With Computers, 1.3-5.

Diaper, D. (1989¢). Giving HCI away. In A. Sutcliffe & L. Macaulay (Eds.), People and computers.V (pp. 109-120).
Cambridge: Cambridge University Press.

Diaper, D. (1990a). Simulation: A stepping stone between requirements and design. In A, Life, C. Narborough-Hall, &
W. Hamilton (Bds.), Simulation and the user interface (pp. 59-75). London: Taylor & Francis.

Diaper, D. (1990b). Analysing focused interview data with Task Analysis for Knowledge Descriptions (CAKD). In D.
Diaper, D. Gilmore, G. Cockton, & B. Shackel (Eds.), Human-computer interaction: Interact, '90 (pp. 271-282).
North Holland: Elsevier.

Diapez, D. (1997). Integrating human-compnter interaction and software engineering requirements analysis: A demon-
stration of task analysis supporting entity modelling. SIGCHI Bulletin, 29(1).

Diaper, D. (2000a). Hardening soft systems methodology. In S. McDonald, Y. Waem, & G. Cockton (Eds.), People
and computers XIV (pp. 183-204). New York: Springer.

Diaper, ID. (2001a). The model matters: Constructing and reasoning with heterarchical structural models. In G. Kadoda
(Ed.), Proceedings of the Psychology of Programming Interest Group 13th Annual Workshop (pp. 191-206).
Bournemouth: Bournemouth University.

Diaper, D. (2001b). Task Analysis for Knowledge Descriptions (TAKD): A requiem for a method. behavior and
Information Technology, 20, 199-212. '

Diaper, D. (2002a). Human-computer interaction. In R. B. Meyers (Ed.), The encyclopedia of physical science and
techrology (3rd ed.; vol. 7; pp. 393—400). New York: Academic Press.

Diaper, D. (2002b). Scenarios and task analysis. nteracting With Computers, 14, 379-395.

Diaper, D. (2002c). Task scenarios and thought. Interacting With Computers, 14, 629-638.

Diaper, D., & Addison, M. (1991). User modelling: The Task Oriented Modelling (TOM) approach to the designer’s
model, In D. Diaper & N. Hammond (Eds.}, People and compuiers VI (pp. 387-402). Cambridge: Cambridge
University Press.

Diaper, D., & Addison, M. (1992). Task analysis and systems analysis for sofiware engineering. Inzeracring Witk
Computers, 4, 124-139.

Diaper, D., & Johnson, P (1989). Task Analysis for Knowledge Descriptions: Theory and application in training. In
J. Long & A. Whitefield (Eds.), Cognitive ergonomics and human-computer interaction (pp. 191-224). Cambridge:
Cambridge University Press.

Diaper, D., & Kadoda, G. (1999). The process perspective. In L. Brooks, & C. Kimble (Eds.). UK Academy for
Information Systems 1999 Conference Proceedings (pp. 31-40). New York: McGraw-Hill.

Diaper, D., McKearney, ., & Hume, I. (1998). Integrating task and data flow analyses using the Pentanalysis Tech-
nique. Ergonomics, 41, 1553-1583.

1. UNDERSTANDING TASK ANALYSIS 47

Diaper, D., & Shelton, T. (1987). Natural language requirements for expert system naive users. In Recent developments
and applications of natural language understanding (pp. 113-124). London: Unicom Seminars Ltd.

Diaper, D., & Shelton, T. (1989). Dialognes With the Tin Man: Computing a natural language grammar for expert
system naive users. In J. Peckham (Ed.), Recent developments and applications of natural language processing
{pp. 98-116). London: Kogan Page.

Diaper, D., & Waelend, P. (2000). World Wide Web working whilst ipnoring graphics: Good news for web page
designers. Interacting With Computers, 13, 163-181.

Dowell, 1., & Long, J. (1989). Towards a conception for an engineering discipline of human factors. Ergonomics, 32,
1513-1535.

Downs, E., Clare, P., & Coe, L. (1988). Structured systems analysis and design method: Application and comtext.
Englewood Cliffs, NJ: Prentice Hall.

Easterbrook, S. (Ed.). (1993). CSCW: Cooperation or conflict? New York: Springer-Verlag.

Eva, M. (1994). SSADM version 4: A user’s guide {2nd ed.). New York: McGraw-Hill.

Green, T. R. G. (1990). The cognitive dimension of viscosity: A sticky problem for HCL In D. Diaper, D. Gilmore,
G. Cockton, & B. Shackel (Eds.), Human-computer interaction: interact '90. (pp. 79-86). Amsterdam: North-
Holland.

Hammer, M. (1934, February). The OA mirage. Datamation, pp. 36-46.

Hares, J. (1990). SSADM for the advanced praciitioner. New York: Wiley.

Harrison, M., & Thimbleby, H. (1990). Formal methods in human-computer interaction. Cambridge: Cambridge
University Press.

Hinton, G. E., & Anderson, J. A. (Eds.). (1981). Parallel models of associative memory. Hillsdale, NJ: Lawrence
Ertbavm Associates.

Johnson, P, Diaper, D., & Long, J. (1984). Tasks, skills and knowledge: Task analysis for knowledge based descriptions.
In B. Shackel (Ed.), fnteract "84: First IFIP Conference on Human-Computer Interaction (pp. 23-27). Amsterdam:
North Holland.

Life, A., Narborough-Hall, C., & Hamilton, W. (1990). Simulation and the user interface. London: Taylor & Francis.

Lim, K. Y., & Loag, J. (1994). The MUSE method for usability engineering. Cambridge: Cambridge University Press.

Long, J. (1986). People and compuiers: Designing for usability. In M. Harrison, & A. Mook (Eds.), People and
computers: Designing for usability (pp. 3-23). Cambridge: Cambridge University Press.

Long, 1. (1997). Research and the design of human-computer interactions or “What Happened to Validation?” In
H. Thimbleby, B. O'Conaill, & P. Thomas (Eds.), People and computers XIT (pp. 223-243). New York: Springer.

Long, J., & Dowell, J. (1989). Conceptions of the discipline of HCI: Craft, applied science, and engineering. In
A. Sutcliffe & L. Macaulay, (Eds.), People and computers V (pp. 9-34). Cambridge: Cambridge University Press.

Lowe, E. J. (2002). A survey of metaphysics. Oxford: Oxford University Press.

Mumford, E. (1983). Designing participatively, Manchester, England: Manchester Business School Press.

Norman, D. (1985). Cognitive engineering. In D. Norman, & S. Draper (Bds.), User centered system design: New
Perspectives on human-computer interaction (pp. 31-61). Hillsdale NJ: Lawrence Erlbanm Associates.

Nussbanm, M. C. (2001). Upheavals of thought: The intelligence of emotions. Cambridge: Cambridge University
Press.

Paching, D. (1990). Practical soft systems analysis. London: Pitman.

Pressman, R. §. (1994). Software engineering: A practitioner’s approach (European ed.). London: McGraw-Hill.

Pullinger, D. J. (1989). Moral judgements in designing better systems. Inreracting With Computers, 1, 93-104.

Ross, K. A., & Wright, C. R. B. (1988). Discrete mathematics (20d ed.). Englewood Cliffs NJ: Prentice-Hall,

Shapiro, D., & Traunmuiler, R. (1993). CSCW in public administration: A review. In H. E. G. Bonin (Ed.), Systems
engineering in public administration (pp. 1-17). New York: Elsevier.

Sharples, M. (1993). A stdy of breakdowns and repairs in a computer-mediated communication system. Interacting
With Computers, 5, 61-78.

Shepherd, A. (2001). Hierarchical task analysis. London: Taylor & Francis.

Sommerville, 1. (1989). Saoftware engineering. (3rd ed.). Reading, MA: Addison-Wesley.

Satcliffe, A. (1988). Human-computer interface design. London: Macmillan.

Watling, J. L. (1964). Descartes. In D. J. O’Connor, (Ed.), A critical history of western philosophy (pp. 170-186).
London: Macmillan.

Zhang, P. (1999). Will you use animation on your web pages? In F. Sudweeks, & C. T. Romm (Eds.), Doing business
on the Internet: Opportunities and pitfalls {pp. 35-51). New York: Springer.

	Copyright Notice - Doc 17.pdf
	MSPSSOCDS_DAPR09 - Doc 17

